Open Access

How to deal with dialysis catheters in the ICU setting

  • Natacha Mrozek1, 2Email author,
  • Alexandre Lautrette1, 2,
  • Jean-François Timsit3, 4 and
  • Bertrand Souweine1, 2
Annals of Intensive Care20122:48

DOI: 10.1186/2110-5820-2-48

Received: 5 July 2012

Accepted: 30 October 2012

Published: 23 November 2012

Abstract

Acute kidney insufficiency (AKI) occurs frequently in intensive care units (ICU). In the management of vascular access for renal replacement therapy (RRT), several factors need to be taken into consideration to achieve an optimal RRT dose and to limit complications. In the medium and long term, some individuals may become chronic dialysis patients and so preserving the vascular network is of major importance. Few studies have focused on the use of dialysis catheters (DC) in ICUs, and clinical practice is driven by the knowledge and management of long-term dialysis catheter in chronic dialysis patients and of central venous catheter in ICU patients. This review describes the appropriate use and management of DCs required to obtain an accurate RRT dose and to reduce mechanical and infectious complications in the ICU setting. To deliver the best RRT dose, the length and diameter of the catheter need to be sufficient. In patients on intermittent hemodialysis, the right internal jugular insertion is associated with a higher delivered dialysis dose if the prescribed extracorporeal blood flow is higher than 200 ml/min. To prevent DC colonization, the physician has to be vigilant for the jugular position when BMI < 24 and the femoral position when BMI > 28. Subclavian sites should be excluded. Ultrasound guidance should be used especially in jugular sites. Antibiotic-impregnated dialysis catheters and antibiotic locks are not recommended in routine practice. The efficacy of ethanol and citrate locks has yet to be demonstrated. Hygiene procedures must be respected during DC insertion and manipulation.

Keywords

Dialysis catheter Intensive care unit Catheter dysfunction Catheter infection

Review

Introduction

Acute kidney insufficiency (AKI) [1] requiring renal replacement therapy (RRT) occurs in approximately 4% of critically ill patients [2] and is associated with a mortality rate ranging between 38% and 82% [3]. Whereas vascular access is necessary for extracorporeal blood circulation during RRT, measures should be taken to preserve the vascular network, due to the higher risk of long-term chronic renal disease in these patients [4]. In critically ill patients, veno-venous access via dialysis catheters (DCs) rather than arteriovenous access is recommended [5]. Most information and recommendations on temporary DC insertion and management are based on data concerning the use of long-term DCs in patients with end-stage renal disease (ESRD) or that of central venous catheters (CVCs) in the intensive care unit (ICU). Whether such data may be extrapolated to DCs in critically ill patients is questionable, because critically ill patients differ widely from ESRD patients, DCs differ widely from CVCs with regard to manipulation and management, and RRT techniques differ widely between the dialysis unit and the ICU.

During the past decade, several reports have been published on the epidemiology of DC-related complications in ICU patients [615]. This review looks at the basic characteristics of dysfunction, thrombosis, and infections encountered with DC use in adult critically ill patients.

DC dysfunction and thrombosis

DC dysfunction

Blood flow (Q B) through the DC is a major determinant of an optimal RRT dose [16]. The impact of DC on the actual delivered dose is greater in intermittent than in continuous RRT techniques, because the latter use lower Q B and therefore are less dependent on DC performance. In chronic hemodialysis patients, DC dysfunction is defined as the failure to attain a sufficient extracorporeal blood flow of ≥300 mL/minute with a prepump arterial pressure below −250 mmHg [17]. In critically ill patients, there are numerous definitions of DC dysfunction, most of which apply to patients on intermittent hemodialysis [1820]. In these studies, DC dysfunction is defined as the inability to attain and maintain blood flows of at least 150 ml/min [18], a low blood flow (<200 mL/min) incapable of providing adequate dialysis [19], and Q B reduction >20% despite attempts to restore patency [20]. In a recent study, DC dysfunction in patients on continuous RRT was defined by the necessity to replace the DC because of an inability to attain an adequate Q B through the DC [11]. In clinical practice, temporary DC dysfunction can be defined as the failure to attain and maintain Q B through the DC sufficient for the administration of an adequate RRT dose. DC dysfunction can be diagnosed as frequent arterial and venous pressure alarms, which reveal a high negative outflow pressure and an increase in venous pressure. DC dysfunction can be indicated by low values of urea reduction in patients on continuous or intermittent RRT techniques [21] or by low Kt/V values in patients on intermittent hemodialysis [22]. In the latter, the delivered RRT dose can be easily estimated by ionic dialysance measurement [23]. The RRT dose should be prescribed before each session of RRT and the actual delivered dose regularly assessed. In the VA/NIH study, there were no differences in outcome between patients receiving a weekly 3.9 Kt/V and a weekly 7.8 Kt/V [24]. It is therefore recommended to deliver a Kt/V of 3.9 per week [5]. In continuous RRT, the VA/NIH study and the RENAL study showed no differences in mortality between doses of 20 ml/kg/h and 35 ml/kg/h nor between 25 ml/kg/h and 40 ml/kg/h [24, 25]. In continuous RRT, it is recommended to deliver an effluent volume of 20–25 ml/kg/h [5]. Immediate or early DC dysfunction usually results from improper catheter placement, such as insertion in the wrong vessel, malposition of the catheter tip (sucking the wall of the vein), and kinking of the catheter, and strictures caused by ligatures or fascia. Inadequate Q B that occurs late after DC insertion more often is caused by thrombotic problems, either intrinsic (partial or total obstructive thrombosis of the catheter lumen) or extrinsic (thrombosis or stenosis of the cannulated vein) catheter thrombosis [4].

In the literature, the rates of DC dysfunction differ because of differences in study design and the definitions of dysfunction. In one survey of 73 DCs, the DC dysfunction rate was 31.5% [18]. In the Cathedia study, when only the first DC placement was assessed, the rate of DC dysfunction was 10.7% (74/690) [11] but increased to 24.2% (65/268) in the 134 patients with two consecutive DCs inserted at an alternative site. The rate of DC dysfunction increases with DC placement duration and is higher beyond the first week of DC insertion [18]. However, most DC dysfunctions occur within the first 10 days of DC placement [11].

Preventive strategies of DC dysfunction include ultrasound guidance for a higher chance of DC placement [5], checking for adequate flow immediately after placement, flushing each DC lumen with saline at the beginning and end of each RRT session, anticoagulant locking followed by careful clamp closing, and checking the correct position with x-rays. In a recent, prospective, randomized, monocentric study involving 78 patients in a surgical ICU, citrate catheter lock solution, by comparison with serum saline lock solution, reduced DC dysfunction and extended DC life span [20]. When dealing with DC dysfunction, classical measures to improve Q B include repositioning the patient, flushing the DC with saline, rotating the DC, and reversing the lines. In hemodynamically stable patients with low KT/V values and persistent low Q B (Q B <200 ml/min) in the extracorporeal circuit despite implementation of the above measures, the question of DC replacement should be addressed.

Materials of the catheter

Temporary DCs are usually made of thermoplastic elastomers that are rigid at room temperature to facilitate insertion and that soften at body temperature to minimize vessel lesions. Silicon DCs are less thrombogenic than polyurethane DCs [26, 27]. For an equal outer diameter, polyurethane DCs have thinner walls than silicone DCs and provide less resistance to Q B. Catheter integrity may be altered by antiseptic solutions. Polyvidone iodine has no impact on polyurethane but induces a structural degradation of silicone. Ethanol exposure has only a marginal impact on silicone DC integrity; in contrast, prolonged exposure of polyurethane DCs to concentrated ethanol should be avoided [28].

Because DCs are thrombogenic, manufacturers have designed DCs coated with heparin. In chronic dialysis patients, heparin-coated catheters are safe but do not reduce catheter dysfunction [2931]. There are no published, clinical studies in adult critically ill patients that compare DC dysfunction rates for heparin-coated and noncoated DCs.

Tunneled DCs

One prospective study compared tunneled and non-tunneled DCs inserted at the femoral site in 30 critically ill patients and showed that in patients with tunneled DCs, DC dysfunction occurred less frequently, and the delivered RRT dose and catheter duration were higher [9]. However, the insertion procedure of tunneled DC took longer and resulted in more femoral hematomas [9].

DC lumens

Venovenous catheterization can be performed with two single-lumen DCs either placed side by side in the same vein or in two different veins, and with a dual-lumen DC or a triple-lumen DC that has a third lumen for fluid and medication administration or blood sampling. In a retrospective study performed in critically ill patients on intermittent hemodialysis involving 534 DCs, the incidence rate of thrombotic complications was significantly higher in dual-lumen than in single-lumen DCs [19]. In most cases, the higher incidence rate of dual-lumen thrombotic complications was due to thrombosis of the arterial line.

Several internal configuration lumens are available for dual-lumen DCs, including double D, double C, coaxial, and shotgun lumens. Semirigid polyurethane dual-lumen DCs with shotgun lumens and no side holes are the most popular devices because of their ease of insertion and good flow characteristics [32].

Distal ports of DCs, positioning and length of the catheter

The adequacy of the delivered RRT dose decreases proportionally with the increase in blood recirculation. Blood recirculation occurs when dialyzed blood returning through the venous DC lumen reenters the extracorporeal circuit through the arterial lumen, rather than returning to the systemic circulation. Several mechanisms contribute to blood recirculation, such as Foucault current due to turbulent flow and catheter tip clotting, obstruction flow in the vein, reversal of flow in the central venous system during the atrial systole (normal pulsatile flow, tricuspid regurgitation), sheathing of the catheter with fibrin, which can create a pathway from the outflow to the inflow port, positive pressure ventilation, and reversal of the outflow and inflow lines. Blood recirculation is minimized when the venous outlet is positioned in a large central vein with a high blood flow rate and therefore depends on the length of DCs. Because blood recirculation depends mainly on the ratio of the flow in the catheter and in the vessel in which it is located, its impact on the delivered RRT dose is lesser in continuous RRT, which uses lower Q B than intermittent hemodialysis.

The tips of DCs inserted in the upper body have to be placed close to the right atrium to provide a better Q B. Because polyurethane DCs are made of rigid plastic, they must not be extended beyond the superior vena cava to avoid right atrial trauma. For internal jugular access, both 15–20-cm silicone DCs targeting the superior vena cava and 20–24-cm soft silicone DCs targeting the right atrium appeared to be safe in critically ill patients. However, the silicone DCs with right atrial placement also improved dialyzer life span [33]. For femoral access, DC tips should be placed in the inferior vena cava to minimize blood recirculation because the lower flow in the smaller veins can dip below the pumped flow. Femoral catheters <20 cm have significantly greater blood recirculation than those >20 cm [34]. In critically ill patients, DCs with a minimal length of 24 cm could possibly be used, because compared with 24-cm femoral DC 20-cm femoral DCs are independently associated with a diminished urea reduction ratio [11].

Insertion site

Because end-stage renal disease may complicate AKI, subclavian access for DC placement should be proposed as a last resort for fear of vein stenosis, which compromises permanent access in critically ill patients [5]. Prospective surveys of DCs in critically ill patients suggest that internal jugular access might be preferable to femoral access to minimize DC dysfunction [35] and blood recirculation [36], and to improve RRT provision [37]. The results of recent studies contrast with these data. In the Cathedia study, which included 750 patients from 12 different ICUs, the rate of DC dysfunction of the first RRT vascular access was similar in the femoral (36/348, 10.3%) and the internal jugular routes (38/342, 11.1%), and the time to DC dysfunction did not differ between the two access sites [11]. These results were confirmed in a subgroup analysis performed in 134 patients who received two successive DCs at two different insertion sites (either femoral or internal jugular) and that showed a rate of DC dysfunction of 22.4% with femoral access and of 26.1% with internal jugular access [13]. However, when the sides of site insertion are compared, there is a trend to a lower rate of DC dysfunction in the right internal jugular site (6.6%) than in the femoral sites (10.3%). DC dysfunctions are more frequently observed at the left internal jugular site (19.5%) than at the right internal jugular and femoral sites [11].

Among patients starting with intermittent hemodialysis, there is no difference in the RRT dose as evaluated by the urea reduction ratio (URR), between femoral and internal jugular accesses [11]. Independent factors of higher URR in multivariate analysis were female gender, lower weight, higher predialysis urea value, and longer session duration. A reduced URR was associated with 20-cm DCs by comparison with 24-cm DCs at the femoral site. For a Q B < 200 ml, there was no difference between the femoral and the internal jugular routes. In contrast, Q B > 200 ml was associated with a higher URR when DCs were inserted at the internal jugular site [11].

In conclusion, when considering DC dysfunctions and the delivery RRT dose, the internal jugular and femoral routes are equivalent. Because right internal jugular access offers the straightest route to the superior vena cava and allows higher Q B, it should be used as the first choice for DC placement in patients treated with intermittent hemodialysis if the prescribed Q B is higher than 200 ml/min. Ultrasonography guidance, which reduces the risk of catheter placement failure [3840] and of insertion-related complications, is recommended for temporary DC placement in AKI patients [5], particularly for internal jugular access, which is more frequently associated with life-threatening catheter-insertion complications than femoral access [10].

DC-related thrombosis

Intraluminal DC thrombosis

Strategies for the prevention of intraluminal thrombosis include forcible flushing with saline of both DC lumens to clear them of blood at the beginning and at the end of each RRT session, anticoagulant interdialytic locking, and careful closing of the clamp on the catheter after interdialytic lock instillation. Concentrated heparin is the most popular interdialytic anticoagulant solution used for DC locking, even though no clinical study in critically ill patients has assessed its efficacy and safety. A recent, prospective, randomized, monocentric study of 78 patients in a surgical ICU suggests that 46.7% sodium citrate locks reduce DC dysfunction rates and increase DC life span compared with serum saline locks [20]. When thrombosis is limited to the DC lumen, DC locking with fibrinolytic agents, such as urokinase and alteplase, is effective in restoring DC patency in chronic dialysis patients [17]. Whether this intervention is safe in critically ill patients remains unknown and therefore the use of fibrinolytic locks cannot yet be recommended.

DC-associated vascular thrombosis

Very few data are available for DC-associated vascular thrombosis in critically ill patients. In the Cathedia study, the rate of symptomatic deep venous thrombosis was 0.5% (4/736) and did not differ between internal jugular and femoral DC placement. In the two centers of the study in which the presence of DC-associated thrombotic complications was systematically assessed by ultrasonography, the rate of thrombosis was 16.5% (25/151), with a trend to a higher rate in the internal jugular arm (22.7%) than in the femoral arm (10.5%) [10]. There are no published reports on the management of DC thrombosis. However, when dealing with asymptomatic or symptomatic DC-associated vascular thrombosis in the ICU setting DC removal is mandatory.

Guidewire exchange

In chronic dialysis patients, it is recommended to use a guidewire for replacement of a malpositioned catheter inducing DC dysfunction [17]. Guidewire exchange in the event of DC dysfunction often is performed in ICU patients, but its efficacy and adequacy have not been assessed. Further studies are needed in the ICU setting to determine the impact of this strategy.

Catheter management

Catheter dysfunction rates differ between ICUs [11], suggesting that procedures, teaching and training of staff and physicians concerning DC placement, and maintenance play a major role in RRT management and provision [41]. Procedures to prevent catheter dysfunction are given in Table 1.
Table 1

Prevention and management of catheter dysfunction

Choice of the dialysis catheters

Materials

Silicone or polyurethane catheter

 

Heparin coated catheters are not recommended

Diameters

12- to 16-French (4–5 mm)

Length

For the upper sites: at least 15 cm to obtain right atrium placement for soft DC, superior vena cava for rigid DC

 

For the lower sites: probably at least 24 cm

Lumens

Dual lumen catheter

 

Two single-lumen catheters less easy to place but at least as accurate as dual lumen catheters

Tunnelization

Lower rate of DC dysfunctions but placement more difficult

Choice of the insertion site

 

Femoral and right jugular sites better than left jugular site

 

Right internal jugular site should be preferred in intermittent hemodialysis if Q B has to be higher than 200 ml/min

 

Subclavian sites to be avoided

 

Ultrasound guidance especially for jugular sites

 

Preserve vascular network

Positioning of the catheter

Upper sites

Tips of the catheter placed next to the right atrium in the superior vena cava

 

Check chest radiography

Lower sites

Tips of the catheter placed in the inferior vena cava

During renal replacement therapy (RRT)

Flush

Use saline solution flushes before and after every RRT session

Pressure

Check pressure greater than −250 mmHg on the inflow site

 

Check pressure <250 mmHg on the outflow site

Lock

Anticoagulant lock, i.e., heparin after every RRT

Clamp

Careful clamp closing after every RRT

In case of dysfunction

Patient

Try to change patient position

Flush

Try to flush catheter lumens with saline solutions

Catheter

Try to rotate the catheter

Lumens

Try to reverse catheter lumens. Prolonged port reversal not recommended due to recirculation which compromises efficacy

Locks

Fibrinolytic locks are not evaluated and are not yet recommended

Dose of RRT

Check previous KT/V in case of intermittent hemodialysis session and consider catheter replacement

Education of the team

DC-related infections

Since a review on the prevention of catheter related infection in ICU was recently published in this journal [42], this chapter will focus on the epidemiologic particularities, and preventive measures specifically tested in ICU patients with DCs. The definitions of DC infections are classically extrapolated from the definitions used for CVC infections [42]. DC colonization is defined by a positive semiquantitative [43] or quantitative [44, 45] DC tip culture. DC-related clinical sepsis is defined by DC colonization and resolution of clinical sepsis after DC removal in the absence of any other infectious site or initiation of new antibiotic therapy or both. Exit site infection is diagnosed by the presence of pus at the insertion site. DC-related bloodstream infection is defined as the isolation of the same phenotypic microorganism from peripheral blood culture and from DC tip culture or by a differential time to positivity of at least 120 minutes between blood cultures centrally drawn from DC and from a peripheral vein, when there is no other overt source for the bacteremia except the DC. The main trials studying DC infection in ICU are given in Table 2.
Table 2

Characteristics of the main trials studying dialysis catheter infection in ICU

Author

Date

Study design

No. of patients

Catheters number

Site of insertion

Catheter tip culture

Catheter-related infection definition

Colonization (/1,000 c.d.)

Catheter-related infection (/1,000 c.d.)

TC (days, mean ± SD)

Souweinea

1995-1996

Prospective, open, monocentric

170

151

Femoral and jugular

Simplified Brun Buisson

CRBSI: catheter colonization and blood culture positive for the same organism; site infection: presence of pus at the insertion site.

24.2

1.5

6.8 ± 6

Westera

1997-1998

Prospective, open, monocentric, CAVHDF, ICU

43

139

Axillary arteries, femoral veins and arteries, subclavian veins

Semiquantitative culture: >15 CFU; quantitative culture: >10^3 CFU

Exit site infection: erythema, tenderness, induration, or purulence within 2 cm of the skin at the exit site of the catheter; CRBSI: Same organism isolated from a culture of the catheter and from the blood with clinical symptoms of infection; in the absence of laboratory confirmation, defervescence after removal of a catheter may be considered indirect evidence of CRBSI.

46.8% vs. 39.1%

2.2%

4.2 ± 2 vs. 7.3 ± 4.5

Harba

1998-1999

prospective, open, monocentric, ICU

47

79

Femoral, subclavian, and jugular

Simplified Brun Buisson

Infected catheter: positive catheter tip culture with clinical signs of sepsis resolving within 48 hours after catheter removal; CRBSI: same microorganism isolated from the catheter tip culture and from cultured peripheral blood culture drawn during catheter placement or within the 24 hours following removal of the catheter. Differential time of positivity >2 hours.

5.4 (3.7%)

1.8 (1.2%)

6.9 ± 5.5

Chatzinikalaoub

2000-2002

prospective, randomized, monocentric, antibiotic coated dialysis catheters, 82% ICU

130

130: 66 antibiotic coated vs. 64 non-coated catheters

Femoral

Sherertz

fever (>38°C), chills, hypotension, skin organisms cultured from at least one blood cultures from a peripheral vein that was not related to infection of another site, and antimicrobial therapy; same organism isolated from peripheral blood culture and from DC tip culture (>1,000 CFU); presence of a positive quantitative catheter culture in a patient with clinical signs of sepsis that disappeared within 48 hours after catheter removal.

22% of all catheters (20% of antibiotics coated catheters vs. 25% of uncoated catheters)

14.3 (11% of uncoated catheter)

8 ± 6

Souweinea

2001-2004

prospective, open, monocentric

99

130

Femoral and jugular

Simplified Brun Buisson

CRBSI: isolation of the same phenotypic microorganism from both peripheral-blood culture and catheter-tip culture growing greater than 10^3 CFU/mL when there was no other source for bacteremia.

9.1

0

6.7 ± 4

Schönenberga

2003-2007

prospective, open, monocentric

173

173

Subclavian, jugular, and femoral

NR

CRBSI: criteria for laboratory diagnosis of infection and clinical signs of sepsis. Laboratory diagnosis of infection is defined as a positive blood culture with a strain not descending from a different site of infection.

NR

3.8

9.2

Kloucheb

2004-2005

prospective, monocentric, randomized, ICU

30

30: 15 tunneled vs. 15 non- tunneled catheters

Femoral

NR

Association of fever or chills or an overtly purulent exit site with a positive catheter clot or catheter culture result

NR

6.7%

13.5 ± 9.2 (tunneled) vs. 5.6 ± 3.4 (non-tunneled)

Parientib

2004-2007

prospective, multicentric, randomized, few coated catheter (21%), ICU

637

637: 366 jugular vs. 370 femoral catheters

Femoral and jugular

Simplified Brun Buisson

catheter tip colonization plus at least one peripheral blood culture yielding the same species with the same antimicrobial susceptibility as the catheter tip within 48 hours of catheter removal, with no other apparent source of sepsis

40.8 (25.9%, femoral catheter) vs. 35.7 (24.9%, jugular catheter)

1.5 (0.5%, femoral catheter) vs. 2.3 (0.5%, jugular catheter)

4.9 ± 2

Parientib

2004-2007

prospective, multicentric, randomized, few coated catheter (21%), ICU

637

637: 470 intermittent RRT vs. 266 continuous RRT

Femoral and jugular

Simplified Brun Buisson

catheter tip colonization plus at least one peripheral blood culture yielding the same species with the same antimicrobial susceptibility as the catheter tip within 48 hours of catheter removal, with no other apparent source of sepsis

38.9 (25.4%) [42.7 (intermittent hemodialysis) vs. 27.7 (continuous renal replacement therapy)]

1.9 (1.3%) [2.6 (intermittent hemodialysis) vs. 1.2 (continuous renal replacement therapy)]

6.3 (6.2) vs. 6.6 (6)

Duguéb

2004-2007

prospective, multicentric, randomized, few coated catheter (21%), ICU

134

268: 57 femoral then jugular vs. 77 jugular then femoral catheter

femoral and jugular

simplified Brun Buisson

NR

25,4% (femoral catheter) vs. 26,9%(jugular catheter)

NR

7.9 (5.6)

Skofica

2004-2008

retrospective, monocentric, prospectively data collection

290

534

femoral, subclavian, and jugular

NR

exit site infection: local inflammation with purulent discharge and positive exit site culture; suspected CRBSI: proven systemic infection without any other recognized source of infection; confirmed CRBSI: at least one positive blood culture from a peripheral vein along with at least one positive blood culture from the catheter or positive catheter tip culture with an identical microorganism; possible CRBSI: at least one positive microbiological culture, good clinical response to catheter removal and antibiotic therapy, but lacking all criteria for confirmed CRBSI.

NR

4.6 (5.2%)

11

Hermiteb

2009-2010

prospective, monocentric, randomized, ICU

78

135: 77 saline vs. 58 citrate lock

femoral and jugular

NR

CRBSI: fever (>38°C) with concordant positive blood cultures drawn from the catheter and a peripheral vein or a peripheral blood culture and a concordant exit site culture; probable CRBSI: fever with one positive blood culture, in the absence of any other clinically identifiable source of infection other than the catheter.

NR

30 (saline lock) vs. 24 (citrate lock)

6 [310] saline lock group vs. 12 [817] citrate lock group

TC time of catheterization; ICU intensive care unit; CAVHDF Continuous arteriovenous hemodiafiltration; CRBSI Catheter-related bloodstream infection; CFU Colony-forming unit; NR not related; Simplified Brun Buisson and Sherertz as previously described [44, 45] aObservational descriptive studies; bcomparison studies.

Mechanisms and incidence of DC-related infections

In short-term catheterization, the exoluminal route is considered the main mechanism of catheter colonization. Frequent manipulations during DC use may predispose the endoluminal route to DC colonization. However, the etiologic organisms of short-term DC and central venous catheters are similar whatever the insertion site. This suggests that the route of colonization may not differ between these two types of catheters [6, 10].

Measures for preventing DC infections

Procedures to prevent DC infections are summarized in Table 3.
Table 3

Prevention of dialysis catheter infection

Choice of the dialysis catheter

Lumens

No difference between dual lumen catheter and two single lumen catheters placed side by side in terms of infection

Tunnelization

Not recommended for initiating RRT

Antimicrobial-coated catheters

Use not currently recommended and should be limited to units with high rates of DC infections despite implementation of adequate preventive strategies

Choice of the insertion site

 

No difference between femoral or jugular sites in term of infection.

 

Physicians should be vigilant with femoral site in case of high body mass index, and with internal jugular site in case of low body mass index

Insertion procedures

Hygiene procedure

Surgical hand disinfection

Depilation

Wear a long-sleeved sterile gown, sterile gloves, and cap

 

Use a large sterile drape

 

If hairs disturb vascular puncture or dressing occlusion

Skin preparation

>0.5% alcoholic chlorhexidine or alcoholic povidone iodine

Antibiotic prophylaxis Ultrasound guidance

Not recommended. May be proposed for internal jugular DC placement

During RRT

 

Hygiene procedure

Use strict aseptic conditions for every DC manipulation

Dressing

Limit manipulation

 

Avoid use of dialysis catheter for perfusion or blood samples, except in case of life threatening emergency

 

Semipermeable transparent polyurethane dressing, sterile gauze

Antimicrobial lock solutions

Before applying a new dressing, clean skin with antiseptic solution, 0.5% alcoholic chlorhexidine or alcoholic povidone iodine

 

Change in case of disruption or soiled dressing

 

Change dressings at every dialysis

 

Not recommended for prevention

Local ointments

Not recommended for ICU dialysis catheter

Catheter

Catheter replacement not scheduled

 

Limit indwelling time and remove as soon as unnecessary

Hygiene precautions insertion technique and general policy

No specific study has been performed on this topic for DC management in the ICU setting, and therefore most available data are derived from studies on central venous catheters. The main findings were published recently in this journal [42]. In an observational study performed in critically ill patients, there was no difference in the rates of catheter colonizations between central venous and DCs when similar infection control measures were used for insertion and maintenance [8]. Thus, as recommended for central venous catheters [46] and dialysis catheters in end-stage renal disease patients [47], DCs in ICU patients should be inserted using maximal sterile barrier precautions and be manipulated under strict aseptic conditions. Skin antisepsis should be performed with >0.5% chlorhexidine preparation with alcohol or alcoholic-povidone iodine [46]. One study demonstrated that ultrasound guidance before insertion in the internal jugular vein reduces the rate of central venous catheter-related bacteremia [48]. No study has specifically assessed whether ultrasound guidance on DC insertion reduces DC infections in critically ill patients. Continuous training and competence testing of medical and nursing staff along with assessment of compliance with preventive measures and of feedback to health care workers should be included in preventive strategies of DC infections [47].

Antimicrobial coating and catheter selection

Regarding the risk of DC infections in relation to the number of DC lumens, only one study, which was retrospective, has focused on this topic and reported no differences in DC infections between patients with two single-lumen DCs and those with double lumen DCs [19]. One randomized, control study evaluated the impact of antimicrobial-coated DCs in critically ill patients [49]. It included both critically and non-critically ill patients with femoral non-tunneled DCs. The rate of DC-related infections was significantly lower in patients with rifampin-coated DCs compared with standard DCs. In the group with standard DCs, of the seven patients with infection, only one developed a DC-related bloodstream infection as defined by both blood cultures and catheter cultures positive for the same microorganism. In addition, there is a potential risk for emergence of antibiotic resistance when using antibiotic-coated DCs. As recommended for central venous catheters [46], the use of antimicrobial-coated DCs should be limited to units with high rates of DC infections despite the implementation of adequate preventive strategies. Whether tunneled DCs may be used for preventing DC infections in the ICU setting requires additional investigation, because only one small study, involving 30 patients, has addressed this issue and did not provide conclusive results [9]. Initiating RRT via tunneled DC is not yet recommended [5].

Site of insertion

By contrast with long-term DCs, there are no differences in short-term, DC-related infections between femoral and internal jugular accesses in critically ill patients [6, 8, 10]. However, when patients were stratified according to body mass index, the rate of DC-related colonization was higher at the femoral site for patients with a body mass index >28.4 and higher at the internal jugular site for patients with a body mass index <24.2 [10]. Because a relationship may exist between risk of colonization and the risk of infection [50], clinicians should be vigilant when the femoral site is used in patients with high body mass index, and the internal jugular site in patients with low body mass index.

Exit site care

Because of the lack of documented evidence, local antiseptic ointment and antiseptic- impregnated dressing cannot be recommended for DC management in critically ill patients.

Systematic/prophylactic changing and catheter indwelling duration

The rate of DC-related colonization/infection increases with DC duration, and therefore, DCs must be removed as soon as they are no longer needed [6, 7, 12]. The risk of DC colonization increases after 10 days among patients starting continuous RRT. In contrast, the duration of catheterization does not influence the daily hazard rate of DC tip colonization among patients starting with intermittent hemodialysis [12]. Additional data are needed to recommend systematic DC replacement every 10 days in patients treated with continuous renal replacement therapy. More information are needed before routine scheduled changes of DC can be recommended. DCs should be removed as soon as no longer needed.

Effects of RRT on catheter-related infection

Continuous renal replacement therapy may limit the number of catheter manipulations but can increase the risk of hypothermia compared with intermittent hemodialysis. A subgroup analysis of the Cathedia cohort shows that there are no differences between these two types of RRT in terms of infection of vascular access [12].

Antimicrobial/other DC solution lock

Antimicrobial lock consists in instilling and maintaining an antimicrobial solution in the catheter lumen to limit endoluminal biofilm formation and subsequent catheter-related bloodstream infection. Heparin is classically used as an interdialytic lock solution in chronic dialysis patients. Whether heparin lock solutions have antimicrobial activity is debated, because experimental studies assessing the antibiofilm properties of heparin have yielded conflicting results [5153].

Antibiotic-based lock solutions are effective in preventing DC-related bloodstream infections in end-stage renal disease patients with tunneled and cuffed CVCs [5457]. However, a number of issues remains concerning the use of the antimicrobial lock method for the prevention of DC-related infections, including the risk of developing bacterial resistance [58], and systemic toxicity due to leakage of these solutions [59]. Thus, using antibiotic locks for the prevention of catheter-related infections of non-tunneled DCs is discouraged [5].

Other promising antimicrobial lock solutions have been studied in chronic hemodialysis patients. Taurolidine is an antibiotic with anti-lipopolysaccharide properties that is not used to treat systemic infections. A recent study failed to demonstrate that 1.35% taurolidine 4% citrate lock solution reduces DC-related bacteremia compared with heparin [60]. The development of antibiotic-resistant organisms may be prevented in part by using chemical-based antimicrobial solutions, such as concentrated citrate and methyl blue paraben. Concentrated citrate lock solution has been reported to reduce DC-related bacteremia [61]. However, this result was not confirmed in a study with a low baseline catheter-related bloodstream infections rate [62]. A recent, multicenter, prospective study reported the efficacy of a new catheter lock solution combining 7% sodium citrate, 0.15% methylene blue, and paraben for preventing DC related bloodstream infections compared with heparin solution [63]. Concentrated ethanol instilled in the DC lumen for a short dwell time could be an attractive antimicrobial solution, because it acts against bacteria and fungi and is able to eradicate biofilm [64].

Very few data are available on the use of DC antimicrobial lock in critically ill patients. The effectiveness of 46.7% citrate locks versus saline locks, for delaying DC related infections, was recently suggested in a randomized control study involving 78 critically ill patients [20]. However, there was a very high incidence of DC related bloodstream infections in both the citrate (24/1,000 catheter days) and the saline (30/1,000 catheter days) groups. For instance, in a survey of 534 DCs inserted in 289 critically ill patients currently locked in the interdialytic period with 4% or 30% trisodium citrate, the rate of DC related bloodstream infections was 1.6/1,000 catheter days [19], and therefore whether the results of the study of Hermite and colleagues can be extrapolated to ICUs with lower rate of DC-related bacteremia is questionable [20]. Although some antimicrobial locks appear to be promising, further studies are necessary before the use of antimicrobial lock can be recommended for preventing and/or treating DC infections.

Guidewire exchange

DC replacement over guidewire exchange in patients with a suspicion of DC infection is a common practice in many ICUs. A systematic review including ICU patients with different type of catheters suggest that compared with new-site replacement, guidewire exchange is associated with fewer mechanical complications but with a trend toward a higher rate of catheter colonization, regardless of whether patients have a suspected infection [65]. In a recent study in critically ill pediatric patients, guidewire exchange was the only identified risk factor for catheter-related bloodstream infection [66]. Several studies suggest that catheter guidewire exchange in conjunction with systemic anti infectious treatment is an acceptable way to manage mild catheter-related infections in chronic hemodialysis patients. This strategy, called the salvage of site approach, has a low complication rate with no increase in bacteremia episodes and provides similar longevity to new-site placements [17, 6770]. In ICU patients with suspected DC infection, there is a lack of evidence to support or discourage such a strategy. It could be proposed as an alternative option to DC removal in hemodynamically stable patients without endocarditis, thrombosis, or other DC-related focus of infection. In our opinion, the new DC, which has been changed over guidewire, should be removed for a new site placement when shock develops, or in the event of persistent fever or persistent positive blood cultures. We cannot yet say whether the new DC, which has been changed over guidewire, should be removed if the initial DC tip culture yielded a positive result.

Conclusions

Dialysis catheter management is a major factor in ICU renal replacement therapy. The type of catheter and catheterization procedures, especially the insertion site and catheter maintenance (flushes, locks), affects the quality of RRT and the risk of catheter dysfunction. In patients on intermittent hemodialysis, the right internal jugular insertion site should be preferred to deliver the best RRT dose, if the prescribed QB is higher than 200 ml/min. Hygiene procedures that are the same as for central venous catheters are of paramount importance to limit the risk of infection. Further studies are needed to determine the indication of antimicrobial locks, such as ethanol, to prevent DC infections. The insertion site does not influence catheter infection rate except for certain subpopulations. To prevent DC colonization, the physician has to be vigilant for the jugular position when BMI < 24 and the femoral position when BMI > 28. Practitioners should bear in mind that patients with acute kidney injury are likely to become chronic dialysis patients and that it is therefore essential to preserve ulterior potential vascular access. This is why the subclavian insertion site is not recommended. The training of teams managing patients with DC and the teaching procedures need to be evaluated.

Key messages

Point 1 DCs should have an outer diameter of at least 12 Fr and a length of at least 15 cm in the jugular position to obtain right atrium placement for soft DC, superior vena cava for rigid DC, and probably at least 24 cm in length in the femoral site.

Point 2 The left jugular position is associated with a higher DC dysfunction rate. In patients on intermittent hemodialysis, the right internal jugular insertion is associated with a higher delivered dialysis dose if the prescribed Q B is higher than 200 ml/min. To prevent DC colonization, the physician has to be vigilant for the jugular position when BMI < 24 and the femoral position when BMI > 28.

Point 3 Partial thrombosis of the catheter lumen, as evidenced by frequent pressure alarms, leads to a decrease in QB that reduces RRT dose. In the event of DC dysfunction, DC replacement over guidewire can be performed particularly if DC dysfunction results from a malpositioned DC.

Point 4 No evidence of the efficacy of antimicrobial lock and antimicrobial-coated DC in preventing DC infections.

Point 5 AKI is an independent risk factor for end-stage renal disease, and preserving ulterior potential vascular access is essential. This is why the subclavian insertion site is not recommended.

Declarations

Authors’ Affiliations

(1)
Réanimation médicale, Hôpital Gabriel Montpied CHU-Clermont-Ferrand
(2)
UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université d'Auvergne
(3)
Medical Polyvalent Intensive Care Unit, University Joseph Fourier, Albert Michallon Hospital
(4)
EA U823, Albert Bonniot Institute, La Tronche Cedex, University Joseph Fourier

References

  1. Brochard L, Abroug F, Brenner M, Broccard AF, Danner RL, Ferrer M, Laghi F, Magder S, Papazian L, Pelosi P, Polderman KH, on behalf of the ATS/ERS/ESICM/SCCM/SRLF Ad Hoc Committee on Acute Renal Failure: An Official ATS/ERS/ESICM/SCCM/SRLF Statement: Prevention and Management of Acute Renal Failure in the ICU Patient: An International Consensus Conference in Intensive Care Medicine. Am J Respir Crit Care Med 2010, 181: 1128–1155. 10.1164/rccm.200711-1664STPubMedView ArticleGoogle Scholar
  2. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C: Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005, 294: 813–818. 10.1001/jama.294.7.813PubMedView ArticleGoogle Scholar
  3. Ympa YP, Sakr Y, Reinhart K, Vincent J-L: Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med 2005, 118: 827–832. 10.1016/j.amjmed.2005.01.069PubMedView ArticleGoogle Scholar
  4. Canaud B, Desmeules S, Klouche K, Leray-Moragués H, Béraud JJ: Vascular access for dialysis in the intensive care unit. Best Pract Res Clin Anaesthesiol 2004, 18: 159–174. 10.1016/j.bpa.2003.09.010PubMedView ArticleGoogle Scholar
  5. Kidney Disease: Improving Global Outcomes (KDIGO) http://www.kdigo.org/
  6. Souweine B, Traore O, Aublet-Cuvelier B, Badrikian L, Bret L, Sirot J, Gazuy N, Laveran H, Deteix P: Dialysis and central venous catheter infections in critically ill patients: results of a prospective study. Crit Care Med 1999, 27: 2394–2398. 10.1097/00003246-199911000-00012PubMedView ArticleGoogle Scholar
  7. Harb A, Estphan G, Nitenberg G, Chachaty E, Raynard B, Blot F: Indwelling time and risk of infection of dialysis catheters in critically ill cancer patients. Intensive Care Med 2005, 31: 812–817. 10.1007/s00134-005-2621-5PubMedView ArticleGoogle Scholar
  8. Souweine B, Liotier J, Heng AE, Isnard M, Ackoundou-N’Guessan C, Deteix P, Traoré O: Catheter colonization in acute renal failure patients: comparison of central venous and dialysis catheters. Am J Kidney Dis 2006, 47: 879–887. 10.1053/j.ajkd.2006.01.023PubMedView ArticleGoogle Scholar
  9. Klouche K, Amigues L, Deleuze S, Beraud JJ, Canaud B: Complications, effects on dialysis dose, and survival of tunneled femoral dialysis catheters in acute renal failure. Am J Kidney Dis 2007, 49: 99–108. 10.1053/j.ajkd.2006.09.014PubMedView ArticleGoogle Scholar
  10. Parienti JJ, Thirion M, Mégarbane B, Souweine B, Ouchikhe A, Polito A, Forel JM, Marqué S, Misset B, Airapetian N: Femoral vs. jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy. JAMA: J Am Med Assoc 2008, 299: 2413. others 10.1001/jama.299.20.2413View ArticleGoogle Scholar
  11. Parienti JJ, Mégarbane B, Fischer MO, Lautrette A, Gazui N, Marin N, Hanouz JL, Ramakers M, Daubin C, Mira JP: Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med 2010, 38: 1118. others 10.1097/CCM.0b013e3181d454b3PubMedView ArticleGoogle Scholar
  12. Parienti J-J, Dugue AE, Daurel C, Mira J-P, Megarbane B, Mermel LA, Daubin C, du Cheyron D, for Members of the Cathedia Study Group: Continuous Renal Replacement Therapy May Increase the Risk of Catheter Infection. Clin J Am Soc Nephrol 2010, 5: 1489–1496. 10.2215/CJN.02130310PubMed CentralPubMedView ArticleGoogle Scholar
  13. Dugue AE, Levesque SP, Fischer M-O, Souweine B, Mira J-P, Megarbane B, Daubin C, du Cheyron D, Parienti J-J, for the Cathedia Study Group: Vascular Access Sites for Acute Renal Replacement in Intensive Care Units. Clin J Am Soc Nephrol 2011, 7: 70–77.PubMed CentralPubMedView ArticleGoogle Scholar
  14. Wester JPJ, de Koning EJP, Geers ABM, Vincent HH, de Jongh BM, Tersmette M, Leusink JA: Catheter replacement in continuous arteriovenous hemodiafiltration: the balance between infectious and mechanical complications. Crit Care Med 2002, 30: 1261–1266. 10.1097/00003246-200206000-00017PubMedView ArticleGoogle Scholar
  15. Schönenberger M, Forster C, Siegemund M, Woodtli S, Widmer AF, Dickenmann M: Catheter related blood stream infections in critically ill patients with continuous haemo(dia)filtration and temporary non-tunnelled vascular access. Swiss Med Wkly 2011, 141: w13294.PubMedGoogle Scholar
  16. Depner TA: Catheter performance. Semin Dial 2001, 14: 425–431.PubMedView ArticleGoogle Scholar
  17. KDOQI Guidelines http://www.kidney.org/professionals/KDOQI/guidelines_commentaries.cfm
  18. Hryszko T, Brzosko S, Mazerska M, Malyszko J, Mysliwiec M: Risk factors of nontunneled noncuffed hemodialysis catheter malfunction. A prospective study. Nephron Clin Pract 2004, 96: c43–47. 10.1159/000076398PubMedView ArticleGoogle Scholar
  19. Skofic N, Buturović-Ponikvar J, Kovač J, Premru V, Knap B, Marn Pernat A, Kersnič B, Gubenšek J, Ponikvar R: Hemodialysis catheters with citrate locking in critically ill patients with acute kidney injury treated with intermittent online hemofiltration or hemodialysis. Ther Apher Dial 2009, 13: 327–333. 10.1111/j.1744-9987.2009.00734.xPubMedView ArticleGoogle Scholar
  20. Hermite L, Quenot J-P, Nadji A, Barbar SD, Charles P-E, Hamet M, Jacquiot N, Ghiringhelli F, Freysz M: Sodium citrate versus saline catheter locks for non-tunneled hemodialysis central venous catheters in critically ill adults: a randomized controlled trial. Intensive Care Med 2012, 38: 279–285. 10.1007/s00134-011-2422-yPubMedView ArticleGoogle Scholar
  21. Saudan P, Niederberger M, De Seigneux S, Romand J, Pugin J, Perneger T, Martin PY: Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 2006, 70: 1312–1317. 10.1038/sj.ki.5001705PubMedView ArticleGoogle Scholar
  22. Chan MR: Hemodialysis central venous catheter dysfunction. Semin Dial 2008, 21: 516–521. 10.1111/j.1525-139X.2008.00495.xPubMedView ArticleGoogle Scholar
  23. Ridel C, Osman D, Mercadal L, Anguel N, Petitclerc T, Richard C, Vinsonneau C: Ionic dialysance: a new valid parameter for quantification of dialysis efficiency in acute renal failure? Intensive Care Med 2007, 33: 460–465. 10.1007/s00134-006-0514-xPubMedView ArticleGoogle Scholar
  24. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RMH, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P: Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008, 359: 7–20.PubMedView ArticleGoogle Scholar
  25. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, McArthur C, McGuinness S, Myburgh J, Norton R, Scheinkestel C, Su S: Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009, 361: 1627–1638.PubMedView ArticleGoogle Scholar
  26. Canaud B, Leray-Moragues H, Leblanc M, Klouche K, Vela C, Béraud JJ: Temporary vascular access for extracorporeal renal replacement therapies in acute renal failure patients. Kidney Int Suppl 1998, 66: S142–150.PubMedGoogle Scholar
  27. Joannidis M, Oudemans-van Straaten HM: Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit Care 2007, 11: 218. 10.1186/cc5937PubMed CentralPubMedView ArticleGoogle Scholar
  28. Guenu S, Heng A-E, Charbonné F, Galmier M-J, Charlès F, Deteix P, Souweine B, Lartigue C: Mass spectrometry and scanning electron microscopy study of silicone tunneled dialysis catheter integrity after an exposure of 15 days to 60% ethanol solution. Rapid Commun Mass Spectrom 2007, 21: 229–236. 10.1002/rcm.2837PubMedView ArticleGoogle Scholar
  29. Jain G, Allon M, Saddekni S, Barker J-F, Maya ID: Does Heparin Coating Improve Patency or Reduce Infection of Tunneled Dialysis Catheters? Clin J Am Soc Nephrol 2009, 4: 1787–1790. 10.2215/CJN.03920609PubMed CentralPubMedView ArticleGoogle Scholar
  30. Mojibian H, Spector M, Ni N, Eliseo D, Pollak J, Tal M: Initial clinical experience with a new heparin-coated chronic hemodialysis catheter. Hemodial Int 2009, 13: 329–334. 10.1111/j.1542-4758.2009.00339.xPubMedView ArticleGoogle Scholar
  31. Clark TWI, Jacobs D, Charles HW, Kovacs S, Aquino T, Erinjeri J, Benstein JA: Comparison of heparin-coated and conventional split-tip hemodialysis catheters. Cardiovasc Intervent Radiol 2009, 32: 703–706. 10.1007/s00270-009-9608-5PubMedView ArticleGoogle Scholar
  32. Kindgen-Milles D, Kram R, Kleinekofort W: Assessment of temporary dialysis catheter performance on the basis of flow and pressure measurements in vivo and in vitro. ASAIO J 2007, 53: 351–356. 10.1097/MAT.0b013e31803377dbPubMedView ArticleGoogle Scholar
  33. Morgan D, Ho K, Murray C, Davies H, Louw J: A Randomized Trial of Catheters of Different Lengths to Achieve Right Atrium Versus Superior Vena Cava Placement for Continuous Renal Replacement Therapy. Am J Kidney Dis 2012,60(2):272–279. 10.1053/j.ajkd.2012.01.021PubMedView ArticleGoogle Scholar
  34. Little MA, Conlon PJ, Walshe JJ: Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis 2000, 36: 1135–1139. 10.1053/ajkd.2000.19821PubMedView ArticleGoogle Scholar
  35. du Cheyron D, Bouchet B, Bruel C, Daubin C, Ramakers M, Charbonneau P: Antithrombin supplementation for anticoagulation during continuous hemofiltration in critically ill patients with septic shock: a case–control study. Crit Care 2006, 10: R45. 10.1186/cc4853PubMed CentralPubMedView ArticleGoogle Scholar
  36. Leblanc M, Fedak S, Mokris G, Paganini EP: Blood recirculation in temporary central catheters for acute hemodialysis. Clin Nephrol 1996, 45: 315–319.PubMedGoogle Scholar
  37. Liangos O, Rao M, Ruthazer R, Balakrishnan VS, Modi G, Pereira BJG, Jaber BL: Factors associated with urea reduction ratio in acute renal failure. Artif Organs 2004, 28: 1076–1081. 10.1111/j.1525-1594.2004.00023.xPubMedView ArticleGoogle Scholar
  38. Palepu GB, Deven J, Subrahmanyam M, Mohan S: Impact of ultrasonography on central venous catheter insertion in intensive care. Indian J Radiol Imaging 2009, 19: 191–198. 10.4103/0971-3026.54877PubMed CentralPubMedView ArticleGoogle Scholar
  39. Aouad MT, Kanazi GE, Abdallah FW, Moukaddem FH, Turbay MJ, Obeid MY, Siddik-Sayyid SM: Femoral vein cannulation performed by residents: a comparison between ultrasound-guided and landmark technique in infants and children undergoing cardiac surgery. Anesth Analg 2010, 111: 724–728. 10.1213/ANE.0b013e3181e9c475PubMedView ArticleGoogle Scholar
  40. Rabindranath KS, Kumar E, Shail R, Vaux E: Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2011, 58: 964–970. 10.1053/j.ajkd.2011.07.025PubMedView ArticleGoogle Scholar
  41. Baldwin I, Fealy N: Nursing for Renal Replacement Therapies in the Intensive Care Unit: Historical, Educational, and Protocol Review. Blood Purification 2009, 27: 174–181. 10.1159/000190784PubMedView ArticleGoogle Scholar
  42. Timsit JF, Dubois Y, Minet C, Bonadona A, Lugosi M, Ara-Somohano C, Hamidfar-Roy R, Schwebel C, Timsit JF, Dubois Y: New materials and devices for preventing catheter-related infections. Ann Intensive Care 2011, 1: 34. 10.1186/2110-5820-1-34PubMed CentralPubMedView ArticleGoogle Scholar
  43. Maki DG, Weise CE, Sarafin HW: A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977, 296: 1305–1309. 10.1056/NEJM197706092962301PubMedView ArticleGoogle Scholar
  44. Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M: Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 1987, 147: 873–877.PubMedGoogle Scholar
  45. Sherertz RJ, Heard SO, Raad II: Diagnosis of triple-lumen catheter infection: comparison of roll plate, sonication, and flushing methodologies. J Clin Microbiol 1997, 35: 641–646.PubMed CentralPubMedGoogle Scholar
  46. O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, Masur H, McCormick RD, Mermel LA, Pearson ML: Guidelines for the prevention of intravascular catheter-related infections. AAP Policy 2002, 110: e51. othersGoogle Scholar
  47. Vanholder R, Canaud B, Fluck R, Jadoul M, Labriola L, Marti-Monros A, Tordoir J, Van Biesen W: Catheter-related blood stream infections (CRBSI): a European view. Nephrol Dial Transplant 2010, 25: 1753–1756. 10.1093/ndt/gfq205PubMedView ArticleGoogle Scholar
  48. Karakitsos D, Labropoulos N, De Groot E, Patrianakos AP, Kouraklis G, Poularas J, Samonis G, Tsoutsos DA, Konstadoulakis MM, Karabinis A: Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 2006, 10: R162. 10.1186/cc5101PubMed CentralPubMedView ArticleGoogle Scholar
  49. Chatzinikolaou I, Finkel K, Hanna H, Boktour M, Foringer J, Ho T, Raad I: Antibiotic-coated hemodialysis catheters for the prevention of vascular catheter–related infections: a prospective, randomized study. Am J Med 2003, 115: 352–357. 10.1016/S0002-9343(03)00367-XPubMedView ArticleGoogle Scholar
  50. Rijnders BJA, Van Wijngaerden E, Peetermans WE: Catheter-tip colonization as a surrogate end point in clinical studies on catheter-related bloodstream infection: how strong is the evidence? Clin Infect Dis 2002, 35: 1053–1058. 10.1086/342905PubMedView ArticleGoogle Scholar
  51. Capdevila JA, Gavaldà J, Fortea J, López P, Martin MT, Gomis X, Pahissa A: Lack of antimicrobial activity of sodium heparin for treating experimental catheter-related infection due to Staphylococcus aureus using the antibiotic-lock technique. Clin Microbiol Infect 2001, 7: 206–212. 10.1046/j.1469-0691.2001.00233.xPubMedView ArticleGoogle Scholar
  52. Shanks RMQ, Donegan NP, Graber ML, Buckingham SE, Zegans ME, Cheung AL, O’Toole GA: Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun 2005, 73: 4596–4606. 10.1128/IAI.73.8.4596-4606.2005PubMed CentralPubMedView ArticleGoogle Scholar
  53. Miceli MH, Bernardo SM, Ku TSN, Walraven C, Lee SA: In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells. Antimicrob Agents Chemother 2012, 56: 148–153. 10.1128/AAC.05061-11PubMed CentralPubMedView ArticleGoogle Scholar
  54. Yahav D, Rozen‐Zvi B, Gafter‐Gvili A, Leibovici L, Gafter U, Paul M: Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta‐analysis of randomized, controlled trials. Clin Infect Dis 2008, 47: 83–93. 10.1086/588667PubMedView ArticleGoogle Scholar
  55. Snaterse M, Rüger W, Scholte Op Reimer WJM, Lucas C: Antibiotic-based catheter lock solutions for prevention of catheter-related bloodstream infection: a systematic review of randomised controlled trials. J Hosp Infect 2010, 75: 1–11. 10.1016/j.jhin.2009.12.017PubMedView ArticleGoogle Scholar
  56. Labriola L, Crott R, Jadoul M: Preventing haemodialysis catheter-related bacteraemia with an antimicrobial lock solution: a meta-analysis of prospective randomized trials. Nephrol Dial Transplant 2008, 23: 1666–1672. 10.1093/ndt/gfm847PubMedView ArticleGoogle Scholar
  57. Moran J, Sun S, Khababa I, Pedan A, Doss S, Schiller B: A randomized trial comparing gentamicin/citrate and heparin locks for central venous catheters in maintenance hemodialysis patients. Am J Kidney Dis 2012, 59: 102–107. 10.1053/j.ajkd.2011.08.031PubMedView ArticleGoogle Scholar
  58. Landry DL, Braden GL, Gobeille SL, Haessler SD, Vaidya CK, Sweet SJ: Emergence of gentamicin-resistant bacteremia in hemodialysis patients receiving gentamicin lock catheter prophylaxis. Clin J Am Soc Nephrol 2010, 5: 1799–1804. 10.2215/CJN.01270210PubMed CentralPubMedView ArticleGoogle Scholar
  59. Dogra GK, Herson H, Hutchison B, Irish AB, Heath CH, Golledge C, Luxton G, Moody H: Prevention of tunneled hemodialysis catheter-related infections using catheter-restricted filling with gentamicin and citrate: a randomized controlled study. J Am Soc Nephrol 2002, 13: 2133–2139. 10.1097/01.ASN.0000022890.29656.22PubMedView ArticleGoogle Scholar
  60. Solomon LR, Cheesbrough JS, Ebah L, Al-Sayed T, Heap M, Millband N, Waterhouse D, Mitra S, Curry A, Saxena R, Bhat R, Schulz M, Diggle P: A randomized double-blind controlled trial of taurolidine-citrate catheter locks for the prevention of bacteremia in patients treated with hemodialysis. Am J Kidney Dis 2010, 55: 1060–1068. 10.1053/j.ajkd.2009.11.025PubMedView ArticleGoogle Scholar
  61. Weijmer MC, van den Dorpel MA, Van de Ven PJG, ter Wee PM, van Geelen JACA, Groeneveld JO, van Jaarsveld BC, Koopmans MG, le Poole CY, der Meer AMS-V, Siegert CEH, Stas KJF: Randomized, clinical trial comparison of trisodium citrate 30% and heparin as catheter-locking solution in hemodialysis patients. J Am Soc Nephrol 2005, 16: 2769–2777. 10.1681/ASN.2004100870PubMedView ArticleGoogle Scholar
  62. Power A, Duncan N, Singh SK, Brown W, Dalby E, Edwards C, Lynch K, Prout V, Cairns T, Griffith M, McLean A, Palmer A, Taube D: Sodium citrate versus heparin catheter locks for cuffed central venous catheters: a single-center randomized controlled trial. Am J Kidney Dis 2009, 53: 1034–1041. 10.1053/j.ajkd.2009.01.259PubMedView ArticleGoogle Scholar
  63. Maki DG, Ash SR, Winger RK, Lavin P: A novel antimicrobial and antithrombotic lock solution for hemodialysis catheters: a multi-center, controlled, randomized trial*. Crit Care Med 2011, 39: 613–620. 10.1097/CCM.0b013e318206b5a2PubMedView ArticleGoogle Scholar
  64. Balestrino D, Souweine B, Charbonnel N, Lautrette A, Aumeran C, Traoré O, Forestier C: Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution. Nephrol Dial Transplant 2009, 24: 3204–3209. 10.1093/ndt/gfp187PubMedView ArticleGoogle Scholar
  65. Cook D, Randolph A, Kernerman P, Cupido C, King D, Soukup C, Brun-Buisson C: Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 1997, 25: 1417–1424. 10.1097/00003246-199708000-00033PubMedView ArticleGoogle Scholar
  66. Rey C, Alvarez F, De-La-Rua V, Concha A, Medina A, Díaz J-J, Menéndez S, Los-Arcos M, Mayordomo-Colunga J: Intervention to reduce catheter-related bloodstream infections in a pediatric intensive care unit. Intensive Care Med 2011, 37: 678–685. 10.1007/s00134-010-2116-xPubMedView ArticleGoogle Scholar
  67. Sychev D, Maya ID, Allon M: Clinical Outcomes of Dialysis Catheter-Related Candidemia in Hemodialysis Patients. Clin J Am Soc Nephrol 2009, 4: 1102–1105. 10.2215/CJN.01610309PubMed CentralPubMedView ArticleGoogle Scholar
  68. Tanriover B, Carlton D, Saddekni S, Hamrick K, Oser R, Westfall AO, Allon M: Bacteremia associated with tunneled dialysis catheters: comparison of two treatment strategies. Kidney Int 2000, 57: 2151–2155. 10.1046/j.1523-1755.2000.00067.xPubMedView ArticleGoogle Scholar
  69. Mokrzycki MH, Singhal A: Cost-effectiveness of three strategies of managing tunnelled, cuffed haemodialysis catheters in clinically mild or asymptomatic bacteraemias. Nephrol Dial Transplant 2002, 17: 2196–2203. 10.1093/ndt/17.12.2196PubMedView ArticleGoogle Scholar
  70. Casey J, Davies J, Balshaw-Greer A, Taylor N, Crowe AV, McClelland P: Inserting tunnelled hemodialysis catheters using elective guidewire exchange from nontunnelled catheters: is there a greater risk of infection when compared with new-site replacement? Hemodial Int 2008, 12: 52–54. 10.1111/j.1542-4758.2008.00240.xPubMedView ArticleGoogle Scholar

Copyright

© Mrozek et al.; licensee Springer. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement