Open Access

IL-6 rs1800795 polymorphism is associated with septic shock-related death in patients who underwent major surgery: a preliminary retrospective study

  • Maria Angeles Jiménez-Sousa1Email author,
  • Luz Maria Medrano1,
  • Pilar Liu2,
  • Amanda Fernández-Rodríguez1,
  • Raquel Almansa3,
  • Esther Gomez-Sanchez2,
  • Alicia Ortega3,
  • María Heredia-Rodríguez2,
  • Estefanía Gómez-Pesquera2,
  • Eduardo Tamayo2 and
  • Salvador Resino1Email authorView ORCID ID profile
Contributed equally
Annals of Intensive Care20177:22

DOI: 10.1186/s13613-017-0247-8

Received: 22 July 2016

Accepted: 18 February 2017

Published: 28 February 2017

Abstract

Background

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, being the primary cause of death from infection, especially if not recognized and treated promptly. The aim of this study was to analyze whether IL-6 rs1800795 polymorphism is associated with septic shock-related death in European white patients who underwent major surgery.

Methods

We performed a retrospective study on 202 septic shock patients who underwent major cardiac or abdominal surgery. The septic shock was established according to the international septic shock definition. The primary outcome variable was the death within 90 days after diagnosis of septic shock. The IL-6 rs1800795 polymorphism was genotyped by Sequenom’s MassARRAY platform.

Results

The median age of the patients was 73 years, 63.4% were male, and more than 40% of patients had heart disease and hypertension. Overall, the survival analysis showed that 111 (55%) patients died with a survival median of 39 days (95% CI 30.7; 47.2). The genetic analysis association with survival was performed under a recessive genetic model (CC vs. GG/CG). Patients with IL-6 rs1800795 CC genotype had higher mortality rate than the IL-6 rs1800795 GG/CG genotype at days 7 [31.6% (6/19) vs. 10.4% (19/183); log-rank test (p = 0.005)] and 28 [57.9% (11/19) vs. 33.3% (61/183); log-rank test (p = 0.009)], and 90 [68.4% (13/19) vs. 53.5% (98/183); log-rank test (p = 0.006)]. The IL-6 rs1800795 CC genotype was associated with higher risk of septic shock-related death during the first 7 days [adjusted hazard ratio (aHR 4.65; p = 0.002), 28 days (aHR 2.50; p = 0.006), and 90 days (aHR 2.28; p = 0.006)] with septic shock. When patients were stratified by type of surgery, those with IL-6 rs1800795 CC genotype who underwent cardiac surgery had higher risk of death during the first 7 days (aHR 18.39; p = 0.001) and 28 days (aHR 6.1; p = 0.025) than IL-6 rs1800795 GG/GC carrier, whereas patients with IL-6 rs1800795 CC genotype who underwent abdominal surgery had higher risk of death during all follow-up (aHR 1.98; p = 0.050) than IL-6 rs1800795 GG/GC carrier.

Conclusions

The presence of IL-6 rs1800795 CC genotype was associated with higher risk of septic shock-related death in patients who underwent major cardiac or abdominal surgery. These findings need robust validation in bigger independent cohorts.

Keywords

IL-6 SNPs Septic shock Survival Major surgery

Background

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, being the primary cause of death from infection, especially if it is from an unknown origin and it was not treated promptly [1]. Septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic abnormalities are profound enough to substantially increase mortality [1]. Despite advances in treatment and supportive care in recent years, septic shock is a major healthcare problem, affecting millions of people around the world each year and killing a high percentage of patients in hospitals [2], especially in intensive care unit (ICU) [2, 3]. In these patients, early and aggressive treatment has not improved survival [4], and patients that survive to sepsis remain at increased risk to death in the following months and years [5].

The immune dysfunction is the main pathophysiological process in septic patients. These patients are severely immunocompromised and are unable to clarify invasive microbial pathogens [6], which may predict the survival of septic patients [7, 8]. Microbial antigens may cause the typical septic inflammatory cascade with overproduction of proinflammatory cytokine (including TNF-α, IL-1, and IL-6), which may enter into the bloodstream causing hypercytokinemia [9]. These proinflammatory cytokines play an important role in the Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway, by transmitting their information into the cell nucleus for developing a specific response against microbial pathogens [9]. Moreover, proinflammatory cytokines may activate the suppressor of cytokine signaling-3 (SOCS3) and may modulate the cytokine signaling, usually preventing, but in some cases aggravating the outcome of infections [9].

The proinflammatory cytokines may also lead to endothelial damage and intravascular clotting, the formation of blood clots in small blood vessels, multiorgan failure, development of septic shock, and death [9, 10]. Thus, plasma IL-6 levels have been associated with higher risk of sepsis, septic shock, and death [1114]. However, it is not known clearly why under similar circumstances, some patients eliminate more easily an invading microorganism, whereas other patients develop sepsis and septic shock. In this regard, a variable to consider is the host genetic factor, which has been related to sepsis outcome [15]. On this subject, the rs1800795 single nucleotide polymorphism (SNP) at IL-6 promoter has been related to differential production of IL-6 [16]. Furthermore, the rs1800795 IL-6 polymorphism has been associated with the risk of sepsis and death, but with different results depending on the study [1721]. Therefore, in patients who underwent major surgery, the role of the IL-6 rs1800795 SNP in septic shock is not clear yet.

The aim of this study was to analyze whether IL-6 rs1800795 polymorphism is associated with septic shock-related death in European patients who underwent major surgery.

Methods

Patients

We carried out a retrospective study on 202 European white patients older than 18 who developed septic shock. These patients underwent major cardiac or abdominal surgery at the Hospital Clínico Universitario of Valladolid (Spain) between April 2008 and November 2012. Major surgery was considered as an operative procedure in which the patient was under general anesthesia and respiratory assistance because the patient was not able to breathe independently.

The study was conducted in accordance with the Declaration of Helsinki. All patients gave their written consent for the study. The Ethics Committee of Hospital Clínico Universitario (Valladolid) and Instituto de Salud Carlos III (Majadahonda) approved this study.

Control groups

We used a control group of 262 patients who only developed systemic inflammatory response syndrome (SIRS) [22] after major surgery (cardiac or abdominal) and had similar age and gender than septic shock patients. These patients were collected at the Hospital Clínico Universitario between 2008 and 2012. Moreover, for healthy subjects, the frequencies of alleles and genotypes for studied polymorphisms were obtained using the 1000 Genomes Project Web site (http://www.1000genomes.org/home), which provide a broad representation of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations [23]. We select the Iberian populations in Spain (IBS) population that included 107 individuals.

Clinical data

Demographic and clinical data were obtained from medical records: age, gender, type of surgery, prior or pre-existing conditions such as diabetes, chronic obstructive pulmonary disease, hypertension, chronic kidney disease, cancer, liver disease and cardiomyopathy. Cardiopulmonary bypass was carried out in all cardiac surgeries. Acute Physiology and Chronic Health Evaluation (APACHE-II score) [24] and Sequential Organ Failure Assessment (SOFA score) [25] were calculated within the first 24 h after diagnosis, in order to evaluate severity of sepsis.

The diagnosis of septic shock was established according to the criteria laid down by the SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference [22]. The presence of infection was either documented or presumed based on clinical findings. In those cases where infection was strongly suspected but not microbiologically confirmed, two experienced clinicians discussed and reached a consensus diagnosis according to physical and laboratory findings.

DNA genotyping

Total DNA was extracted from peripheral blood with High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany). DNA samples were sent to the Spanish National Genotyping Center (CeGen; http://www.cegen.org/) for IL-6 rs1800795 polymorphism genotyping by using Sequenom’s MassARRAY platform (San Diego, CA, USA) and the iPLEX® Gold assay design system.

Outcome variable

The primary outcome variable was the death within 90 days after diagnosis of septic shock. We used three points censoring: 7 days (very early mortality), 28 days (early mortality), and 90 days (late mortality).

Statistical analysis

For the description of the study population, p values were estimated with nonparametric tests: Mann–Whitney U test was used for continuous variable and Chi-squared/Fisher’s exact test for categorical variables. For the genetic association study, the survival analysis (Kaplan–Meier and Cox regression analyses) was used to compare the outcome variables according to the presence of IL-6 rs1800795 CC genotype. Data were analyzed using dominant, recessive and additive models, which were tested according to the goodness of fit evaluated by Akaike’s information criterion (AIC) value and Bayesian information criterion (BIC).

Follow-up was censored at 90 days. Survival probabilities were estimated using the Kaplan–Meier product-limit method at 7, 28, and 90 days and compared using the log-rank test. Cox regression analyses were used to investigate the relationship of IL-6 rs1800795 polymorphism with the outcome variable during the first 7, 28, and 90 days. Each Cox regression test was adjusted by the most significant covariables for each outcome variable, avoiding the overfitting of the regression. The covariables were selected by stepwise algorithm in a multivariate model. We included the SNP [enter algorithm (forced entry for the SNP)] and the most relevant characteristics by stepwise algorithm (at each step, factors are considered for removal or entry: a p value for entry and exit of 0.15 and 0.20, respectively). The covariables used were APACHE-II score, gender, age, antibiotic treatment, type of surgery (cardiac or abdominal), elective surgery (emergency or scheduled), peritonitis, comorbidities [obesity, diabetes heart disease, chronic obstructive pulmonary disease (COPD)], hypertension, neoplasia, liver disease, smoker, and high alcohol intake. All statistical analyses were performed by using the IBM SPSS Statistics for Windows, version 21.0 (IBM Corp, Chicago, Armonk, NY, USA).

In addition, Hardy–Weinberg equilibrium (HWE) analyses were computed by Haploview 4.2 software, considering equilibrium when p > 0.05.

Results

Characteristics of the study population

Table 1 shows demographic and clinical characteristics of shock septic patients at the time of septic shock diagnosis according to the IL-6 rs1800795 genotype. Overall, the median age was 73 years, 63.4% were male, and more than 40% of patients had heart disease and hypertension. Regarding the type of surgery, 40.1% were cardiac surgery and 63.4% were emergency surgery. The most commonly isolated pathogens were gram-negatives (52.5%), and more than 40% of patients had peritonitis or pneumonia. When the population was stratified according to IL-6 rs1800795 genotype, we only found significant differences in COPD frequencies (p = 0.027).
Table 1

Summary of epidemiological and clinical characteristics of septic shock patients who underwent major surgery

Characteristics

All patients

IL-6 rs1800795 polymorphism

GG/CG

CC

p value*

No. of patients

202

183

19

Gender (male)

128 (63.4%)

115 (62.8%)

13 (68.4%)

0.631

Age (years)

73 (17)

73 (17)

73 (17)

0.974

Prior or pre-existing conditions

 Smoker

36 (17.8%)

35 (19.1%)

1 (5.3%)

0.207

 Alcoholism

15 (7.4%)

14 (7.7%)

1 (5.3%)

0.999

 Obesity

30 (14.9%)

27 (14.8%)

3 (15.8%)

0.999

 Diabetes

26 (12.9%)

23 (12.6%)

3 (15.8%)

0.718

 Heart disease

95 (45.5%)

82 (44.8%)

10 (52.6%)

0.515

 Chronic obstructive pulmonary disease

35 (17.3%)

28 (15.3%)

7 (36.8%)

0.027

 Hypertension

111 (50.0%)

100 (54.6%)

11 (57.9%)

0.789

 Chronic kidney disease

30 (14.9%)

28 (15.3%)

2 (10.5%)

0.745

 Cancer

47 (23.3%)

41 (22.4%)

6 (31.6%)

0.395

 Liver disease

9 (4.5%)

8 (4.4%)

1 (5.3%)

0.597

Surgery

 Cardiac (vs. abdominal)

81 (40.1%)

75 (41%)

6 (31.6%)

0.426

 Emergency (vs. scheduled)

128 (63.4%)

116 (63.4%)

12 (63.2%)

0.984

Severity indexes

 SOFA score

9 (4)

9 (4)

9 (3)

0.932

 APACHE-II score

16 (5)

17 (5)

15 (8)

0.758

Infection

 Gram-positive

99 (49%)

92 (50.3%)

7 (36.8%)

0.265

 Gram-negative

106 (52.5%)

100 (54.6%)

6 (31.6%)

0.055

 Fungus

39 (19.3%)

35 (19.1%)

4 (21.1%)

0.767

 Catheter bacteraemia

68 (33.7%)

63 (34.4%)

5 (26.3%)

0.476

 Surgical site infection

48 (23.8%)

45 (24.6%)

3 (15.8%)

0.573

 Urinary tract infection

24 (11.9%)

21 (11.5%)

3 (15.8%)

0.479

 Endocarditis

10 (5%)

8 (4.4%)

2 (10.5%)

0.239

 Peritonitis

95 (47%)

86 (47%)

9 (47.4%)

0.975

 Pneumonia

95 (47%)

89 (48.6%)

6 (31.6%)

0.156

Values are expressed as median (interquartile range) and absolute count (%)

Note that patients may have had more than one organism cultured

SOFA Sequential Organ Failure Assessment, APACHE Acute Physiology and Chronic Health Evaluation

p values were calculated by Chi-squared test or Fisher’s exact test for categorical variables and Mann–Whitney test for continuous variables. Statistically significant differences are shown in italics

Additional file 1: Table S1 shows demographic and clinical characteristics of shock septic patients stratified by the type of surgery (cardiac and abdominal). The cardiac surgery group had higher frequency of obesity (p = 0.045), heart disease (p < 0.001), and hypertension (p = 0.014) than the abdominal surgery group. Nonetheless, cardiac surgery group had lower frequency of cancer (p < 0.001) than the abdominal surgery group. Also, the cardiac surgery group had higher values of SOFA (p = 0.030) and APACHE (p = 0.032) than the abdominal surgery group. Regarding infection, the cardiac surgery group had higher frequency of catheter bacteraemia (p < 0.001), endocarditis (p < 0.001), and pneumonia (p < 0.001) and lower frequency of peritonitis (p < 0.001).

Characteristics of the IL-6 polymorphism

Table 2 shows the frequencies of IL-6 rs1800795 polymorphism, which displayed missing values <5% and were in HWE (p > 0.05). The minor allele frequency was 32%. Data of our cohort were compared to the frequencies of IL-6 rs1800795 polymorphism in SIRS patients and healthy subjects from the IBS [23]. We did not find any significant difference.
Table 2

Frequencies of alleles and genotypes for IL-6 rs1800795 polymorphism in septic shock patients compared to Iberian populations in Spain from 1000 Genomes Project data (http://www.1000genomes.org/1000-genomes-browsers) and SIRS patients

 

SNP

IBS population

SIRS patients

Septic shock patients

p valuea

p valueb

N

 

107

263

202

  

HWE (p value)

 

0.430

0.750

  

Alleles

G

65%

63%

68%

0.684

0.306

C

35%

37%

32%

Genotypes

GG

41.1%

40%

46%

0.481

0.229

GC

47.7%

44%

45%

0.730

0.903

CC

12.2%

15%

9%

0.490

0.071

p values were calculated by Chi-squared test: (a) differences between IBS population and septic shock patients, (b) differences between SIRS patients and septic shock patients

SIRS patients with systemic inflammatory response syndrome, IBS Iberian populations in Spain, HWE Hardy–Weinberg equilibrium, IL-6 interleukin-6

Additional file 2: Table S2 shows the frequencies of IL-6 rs1800795 polymorphism stratified according to the type of surgery. Overall, we found similar values of allelic and genotypic frequencies between cardiac and abdominal surgery compared to SIRS patients and reference population (IBS); we did not find any significant difference with healthy subjects.

IL-6 polymorphism and death in septic shock patients

We selected the recessive inheritance model (CC vs. GG/CG) for the genetic association study, because it was the model that best fit to our data.

The survival probabilities at 7, 28, and 90 days after the diagnosis of septic shock are shown in Table 3. Out of 202 patients, 111 (55%) died with a survival median of 39 days (95% CI 30.7; 47.2). Patients with IL-6 rs1800795 CC genotype had lower survival probability than IL-6 rs1800795 GG/CG genotype at 7 days (p = 0.005), 28 days (p = 0.009), and 90 days (p = 0.006).
Table 3

Survival probabilities at 7, 28, and 90 days (Kaplan–Meier product-limit method) for IL-6 rs1800795 polymorphism in septic shock patients who underwent major cardiac or abdominal surgery

Points censoring (days)

All patients (%)

IL-6 rs1800795 polymorphism

rs1800795

GG/CG (%)

rs1800795

CC (%)

p value (log-rank test)

7

86.6

88.5

68.4

0.005

28

60.7

63.2

32.9

0.009

90

14.3

15.5

0.0

0.006

IL-6 interleukin-6, p value level of significance

Table 4 shows the mortality risks at 7, 28, and 90 days for the IL-6 rs1800795 polymorphism by Cox regression analysis. The IL-6 rs1800795 CC genotype was associated with higher adjusted risk of septic shock-related death in the first 7 days [adjusted hazard ratio (aHR) 4.65; p = 0.002], 28 days (aHR 2.50; p = 0.006), and 90 days (aHR 2.28; p = 0.006) than IL-6 rs1800795 GG/GC genotype.
Table 4

Risk of death regarding IL-6 rs1800795 polymorphism in septic shock patients who underwent major cardiac or abdominal surgery

 

Univariate

Multivariate

HR

95% CI

p value

aHR

95% CI

p value*

The first 7 days

 rs1800795 CC

3.42

1.36; 8.85

0.009

4.6

1.8; 12.1

0.002

 Cardiac surgery

   

7.9

0.9; 71.1

0.064

 Obesity

   

2.4

0.9; 6.3

0.069

 Alcoholism

   

3.6

1.1; 11.1

0.028

 APACHE-II score

   

1.1

1.1; 1.2

0.000

 Peritonitis

   

11.5

1.4; 97.4

0.025

The first 28 days

 rs1800795 CC

2.28

1.20; 4.34

0.012

2.5

1.3; 4.8

0.006

 Alcoholism

   

1.8

0.8; 3.7

0.135

 Emergency surgery

   

1.9

1.0; 3.6

0.050

 APACHE-II score

   

1.0

1.0; 1.1

0.052

 Peritonitis

   

2.3

1.3; 3.9

0.003

 Heart disease

   

2.0

1.2; 3.4

0.005

The first 90 days

 rs1800795 CC

2.20

1.23; 3.96

0.008

2.3

1.3; 4.1

0.006

 Emergency surgery

   

1.8

1.2; 2.9

0.008

 Peritonitis

   

1.9

1.2; 2.9

0.005

 Heart disease

   

1.7

1.1; 2.6

0.010

 Liver disease

   

2.0

0.9; 4.7

0.107

IL-6 interleukin-6, HR hazard ratio, aHR adjusted hazard ratio, 95% CI 95% confidence interval, p value level of significance

p values were calculated by Cox regression adjusting for the most important clinical and epidemiological characteristics (see “Statistical analysis” section). Statistically significant differences are shown in italics (p < 0.05)

Additional file 3: Table S3 shows the mortality risks at 7, 28, and 90 days according to IL-6 rs1800795 polymorphism and stratified by type of surgery. The IL-6 rs1800795 CC carrier who underwent cardiac surgery had higher risk of septic shock-related death during the first 7 days (aHR 18.39; p = 0.001) and 28 days (aHR 6.1; p = 0.025) than IL-6 rs1800795 GG/GC carrier, whereas IL-6 rs1800795 CC carrier who underwent abdominal surgery had higher risk of septic shock-related death during all follow-up (90 days) (aHR 1.98; p = 0.050) than IL-6 rs1800795 GG/GC carrier.

Discussion

To our knowledge, we described for the first time of the relationship between IL-6 rs1800795 polymorphism and risk of septic shock-related death in European patients who underwent major cardiac or abdominal surgery.

The genetic variation at cytokine genes may influence the risk of sepsis and death [15]. Among these genetic variations, the SNPs at IL-6 promoter are important members which might be associated with sepsis risk and death [17]. In our study, patients with IL-6 rs1800795 CC genotype had higher risk of septic shock-related death, suggesting that IL-6 rs1800795 polymorphism may play a major role in pathogenesis of septic shock. We analyzed allelic and genotypic frequencies of IL-6 rs1800795 polymorphism between groups of patients: septic shock patients, SIRS patients, and healthy people (IBS). No significant differences were found, indicating that our cohort did not have any significant bias regarding the distribution of IL-6 polymorphism.

The IL-6 rs1800795 SNP has been previously associated with sepsis and death, but with discrepant results [1721]. In European population, the rs1800795 GG genotype was associated with protection against the development of septic shock in patients with pneumococcal community-acquired pneumonia [17] and lower mortality [17, 21]. In Greek population, the rs1800795 GG genotype did not show any association with severe sepsis and mortality [18]. In Asian population, the carriers of rs1800795 C allele had higher risk of septic shock, but not higher risk of death [19]. In a recent meta-analysis, Gao et al. [20] found a statistically significant association between rs1800795 CC genotype and sepsis-related mortality (CC vs. GC/GG: OR 1.92, p = 0.03), which disappeared after Bonferroni correction. In this regard, it should be taken into account that only six studies, four of them with limited sample size (n < 60), were included for meta-analysis about sepsis-related mortality. They concluded that current evidence does not support a direct effect of rs1800795 polymorphism on the risk of sepsis and more investigations would be needed to evaluate the effect of this polymorphism on sepsis mortality.

IL-6 is a proinflammatory cytokine which plays a vital role in the regulation of host immune response in sepsis, and elevated expression of IL-6 is associated with the development of severe sepsis and mortality [1114]. This association may be mediated through a variable IL-6 expression encoded by the host. The G to C polymorphism at position-174 of the IL-6 gene (rs1800795) causes differential activity in promoter constructs which up-regulates IL-6 gene transcription and promotes higher circulating levels of IL-6 in individuals that carry rs1800795 G allele [16]. However, Tischendorf et al. observed a quantitative trait locus effect, IL-6 serum concentrations were highest in patients with the rs1800795 GG genotype, followed by CG genotype, and lowest in individuals with CC genotype, but a high ex vivo secretion after LPS stimulation in rs1800795 C carriers was found [26]. These discrepancies among studies (including our study) might be due to the fact that rs1800795 polymorphism is not the causal mutation, or it is not uniquely responsible. Thus, it is possible that the effect rs1800795 SNP may also be due to other SNPs at IL-6 promoter, which are in high linkage disequilibrium with rs1800795 polymorphism forming a haplotype [27, 28]. In our study, plasma IL-6 values could be very helpful and convincing to reinforce the hypothesis that the observed effect of the IL-6 rs1800795 polymorphism is a real biological result. However, IL-6 measurements were not available in this study. As an alternative, a downstream biological measurement such as the white blood cell count, C reactive protein, and procalcitonin was analyzed, but we did not find any significant relationship of IL-6 rs1800795 polymorphism with these markers (data not shown).

We also performed an in silico analysis for evaluating the possible functional implication of rs1800795 polymorphism by using rSNABase (http://rsnp.psych.ac.cn/) [29]. This type of analysis allows to study whether the variant is located within regulatory regions and has a possible transcriptional regulatory effect. We found that IL-6 rs1800795 polymorphism, located within the promoter of IL-6, could be part of RNA-binding protein site and could be involved in RNA-binding protein-mediated post-transcriptional regulation. Moreover, etiology and pathology of sepsis are complex, and the rs1800795 polymorphism may act synergistically with other genetic factors [15], which could be contributing to the risk of death in septic shock. These factors may be SNPs in different type of interleukins, which could play different roles in development of sepsis and clinical outcome [15].

In our study, the association between rs1800795 polymorphism and septic shock-related death was also found when the population was stratified by the type of surgery. However, patients with cardiac surgery showed a significant risk of septic shock-related death in the first 7 and 28 days, whereas patients who underwent abdominal surgery had a significant risk during all follow-up (90 days). These different patterns may be intrinsic to each type of surgery, but we should not rule out the impact of the low sample size of surgery groups. Regarding the association found for cardiac surgery subgroup, the extracorporeal circulation and the surgical injury itself produce complex inflammatory responses which can lead to varying degrees of ischemia–reperfusion injury and/or systemic inflammatory response [30]. Under these circumstances, the role of IL-6 rs1800795 polymorphism might be enhanced and this could justify the fact that we found a higher risk of death during the first 4 weeks of follow-up. Moreover, the association found for abdominal surgery subgroup may be due to a faster development of sepsis than in patients who underwent cardiac surgery, because an intra-abdominal infection usually occurs in the first days of post-surgical intervention [4]. In this case, the influence of the IL-6 rs1800795 polymorphism on the development of septic shock-related death seems to be maintained over time, but the effect is significant when the follow-up of patients reaches 90 days.

The attributable fatality rate of septic shock is high but has significantly dropped in last two decades due to the combination of anti-infective treatments and aggressive organ failure supports [4]. However, patients become exposed to ICU-acquired complications that significantly impact on their prognosis [31, 32]. In a recent article, Daviaud et al. [33] reported that early deaths are mainly attributable to intractable multiple organ failure related to the primary infection and late deaths are related to ICU-acquired complications such as nosocomial infections and mesenteric ischemia. In our study, besides the IL-6 rs1800795 polymorphism, we found a number of factors that were significantly associated with death. APACHE-II score was the most relevant factor associated with the very early mortality, but this factor disappears in favor of others like emergency surgery, peritonitis, and heart disease in the late mortality. Moreover, we included in the analysis a high number of known prognostic factors, but we cannot exclude that other variables not recorded in our study could be influencing the clinical outcome.

Finally, several limitations should be taken into account for the correct interpretation of the results. Firstly, this report has a retrospective design and the sample size was relatively small, which could limit the achievement of statistically significant values between rs1800795 polymorphism and death, especially when we performed the analysis stratified by the type of surgery (abdominal or cardiac surgery). Besides, the limited sample size might increase the risk of false positive. However, we control homogeneity by only including patients with septic shock, without mixing different stages of disease. Secondly, differences in COPD were found when patients were stratified by rs1800795 genotype, but COPD was taken into account in the multivariate analysis. Thirdly, we used multiple points of censoring for death, which may cause problems of multiple comparisons. However, here is a considerable controversy about adjusting the “p value” after multiple tests on clinical-orientated studies [34, 35]. In our study, we had a hypothesis supported by theory and previous reports in septic patients. Therefore, we were not literally doing a random search of a meaningful result, and our results should not be affected by the fact of carrying out a high number of statistical tests.

Conclusions

In conclusion, the presence of IL-6 rs1800795 CC genotype was associated with higher risk of septic shock-related death in patients who underwent major cardiac or abdominal surgery. The IL-6 rs1800795 genotype could allow for a precision approach to the management of septic shock-related death risk. Further analysis involving large numbers of patients in independent cohorts is needed to corroborate these associations.

Notes

Abbreviations

IL-6: 

interleukin-6

JAK–STAT: 

Janus kinase/signal transducer and activator of transcription

SOCS3: 

suppressor of cytokine signaling-3

SNP: 

single nucleotide polymorphism

SOFA: 

Sequential Organ Failure Assessment

APACHE: 

Acute Physiology and Chronic Health Evaluation

COPD: 

chronic obstructive pulmonary disease

HWE: 

Hardy–Weinberg equilibrium

IBS: 

Iberian populations in Spain

aHR: 

adjusted hazard ratio

Declarations

Authors’ contributions

ET and SR helped in funding body. MAJS, ET, and SR contributed to study concept and design. AO and RA collected the sample. ET, PL, MHR, EGP and EGS contributed to patients’ selection and clinical data acquisition. MAJS, LMM, and AFR helped in sample preparation, DNA isolation, and genotyping. MAJS and SR statistically analyzed and interpreted the data. MAJS and SR wrote the manuscript. LMM, AFR, ET critically revised the manuscript for important intellectual content. SR supervised the study. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank the Spanish National Genotyping Center (CeGen) for providing the genotyping services (http://www.cegen.org). We also acknowledge the patients in this study for their participation.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets were analyzed during the current study available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The study was approved by the Research Ethic Committee of the Instituto de Salud Carlos III and was conducted in accordance with the Declaration of Helsinki. All patients gave their written informed consent.

Funding

This work has been supported by grants given by Instituto de Salud Carlos III (Grant Numbers PI15/01451 to ET), “Gerencia de Salud, Consejería de Sanidad, Junta de Castilla y Leon” (Grant No. GRS 463/A/10 and 773/A/13 to ET), and PFIZER (Grant No. CT25-ESP01-01 to SR). MAJS, LMM, and AFR are supported by “Instituto de Salud Carlos III” (Grant Nos.: CD13/00013, CD14/00002, and CP14CIII/00010, respectively).

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda)
(2)
Departamento de Anestesiología y Reanimación, Hospital Clínico Universitario
(3)
Unidad de Investigación Médica en Infección e Inmunidad, Hospital Clínico Universitario-IECSCYL

References

  1. Titmarsh CJ, Moscovis SM, Hall S, Tzanakaki G, Kesanopoulos K, Xirogianni A, et al. Comparison of cytokine gene polymorphisms among Greek patients with invasive meningococcal disease or viral meningitis. J Med Microbiol. 2013;62(Pt 5):694–700. doi:10.1099/jmm.0.058073-0.View ArticlePubMedGoogle Scholar
  2. Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31. doi:10.1097/CCM.0000000000000026.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, et al. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12(12):919–24. doi:10.1016/S1473-3099(12)70239-6.View ArticlePubMedGoogle Scholar
  4. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/s00134-012-2769-8.View ArticlePubMedGoogle Scholar
  5. Endler G, Marculescu R, Starkl P, Binder A, Geishofer G, Muller M, et al. Polymorphisms in the interleukin-1 gene cluster in children and young adults with systemic meningococcemia. Clin Chem. 2006;52(3):511–4. doi:10.1373/clinchem.2005.058537.View ArticlePubMedGoogle Scholar
  6. Machado JR, Soave DF, da Silva MV, de Menezes LB, Etchebehere RM, Monteiro ML, et al. Neonatal sepsis and inflammatory mediators. Mediat Inflamm. 2014;2014:269681. doi:10.1155/2014/269681.View ArticleGoogle Scholar
  7. Shao R, Li CS, Fang Y, Zhao L, Hang C. Low B and T lymphocyte attenuator expression on CD4+ T cells in the early stage of sepsis is associated with the severity and mortality of septic patients: a prospective cohort study. Crit Care. 2015;19:308. doi:10.1186/s13054-015-1024-4.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38(2 Suppl.):S26–34. doi:10.1097/CCM.0b013e3181c98d21.View ArticlePubMedGoogle Scholar
  9. Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, et al. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology. 2002;123(6):1793–803. doi:10.1053/gast.2002.37043.View ArticlePubMedGoogle Scholar
  10. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40(4):463–75. doi:10.1016/j.immuni.2014.04.001.View ArticlePubMedGoogle Scholar
  11. Hack CE, De Groot ER, Felt-Bersma RJ, Nuijens JH, Strack Van Schijndel RJ, Eerenberg-Belmer AJ, et al. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74(5):1704–10.PubMedGoogle Scholar
  12. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med. 1989;169(1):333–8.View ArticlePubMedGoogle Scholar
  13. Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. J Crit Care. 2011;26(1):54–64. doi:10.1016/j.jcrc.2010.04.011.View ArticlePubMedGoogle Scholar
  14. Andaluz-Ojeda D, Bobillo F, Iglesias V, Almansa R, Rico L, Gandia F, et al. A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine. 2012;57(3):332–6. doi:10.1016/j.cyto.2011.12.002.View ArticlePubMedGoogle Scholar
  15. Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86(1):56–61. doi:10.1111/cge.12368.View ArticlePubMedGoogle Scholar
  16. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Investig. 1998;102(7):1369–76. doi:10.1172/JCI2629.View ArticlePubMedPubMed CentralGoogle Scholar
  17. Martin-Loeches I, Sole-Violan J, Rodriguez de Castro F, Garcia-Laorden MI, Borderias L, Blanquer J, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38(2):256–62. doi:10.1007/s00134-011-2406-y.View ArticlePubMedGoogle Scholar
  18. Panayides A, Ioakeimidou A, Karamouzos V, Antonakos N, Koutelidakis I, Giannikopoulos G, et al. 572 G/C single nucleotide polymorphism of interleukin-6 and sepsis predisposition in chronic renal disease. Eur J Clin Microbiol Infect Dis. 2015;34(12):2439–46. doi:10.1007/s10096-015-2500-0.View ArticlePubMedGoogle Scholar
  19. Antonelli M, Bonten M, Chastre J, Citerio G, Conti G, Curtis JR, et al. Year in review in intensive care medicine 2011. II. Cardiovascular, infections, pneumonia and sepsis, critical care organization and outcome, education, ultrasonography, metabolism and coagulation. Intensive Care Med. 2012;38(3):345–58. doi:10.1007/s00134-012-2467-6.View ArticlePubMedPubMed CentralGoogle Scholar
  20. Gao JW, Zhang AQ, Pan W, Yue CL, Zeng L, Gu W, et al. Association between IL-6-174G/C polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis. PLoS ONE. 2015;10(3):e0118843. doi:10.1371/journal.pone.0118843.View ArticlePubMedPubMed CentralGoogle Scholar
  21. Gupta DL, Nagar PK, Kamal VK, Bhoi S, Rao DN. Clinical relevance of single nucleotide polymorphisms within the 13 cytokine genes in North Indian trauma hemorrhagic shock patients. Scand J trauma Resusc Emerg Med. 2015;23:96. doi:10.1186/s13049-015-0174-3.View ArticlePubMedPubMed CentralGoogle Scholar
  22. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31(4):1250–6. doi:10.1097/01.CCM.0000050454.01978.3B.View ArticlePubMedGoogle Scholar
  23. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393.View ArticlePubMedGoogle Scholar
  24. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.View ArticlePubMedGoogle Scholar
  25. Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working group on sepsis related problems of the ESICM. Intensive Care Med. 1999;25(7):686–96.View ArticlePubMedGoogle Scholar
  26. Wojtowicz A, Gresnigt MS, Lecompte T, Bibert S, Manuel O, Joosten LA, et al. IL1B and DEFB1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. J Infect Dis. 2015;211(10):1646–57. doi:10.1093/infdis/jiu636.View ArticlePubMedGoogle Scholar
  27. Garcia-Ramirez RA, Ramirez-Venegas A, Quintana-Carrillo R, Camarena AE, Falfan-Valencia R, Mejia-Arangure JM. TNF, IL6, and IL1B polymorphisms are associated with severe influenza A (H1N1) virus infection in the Mexican population. PLoS ONE. 2015;10(12):e0144832. doi:10.1371/journal.pone.0144832.View ArticlePubMedPubMed CentralGoogle Scholar
  28. Zhang AQ, Pan W, Gao JW, Yue CL, Zeng L, Gu W, et al. Associations between interleukin-1 gene polymorphisms and sepsis risk: a meta-analysis. BMC Med Genet. 2014;15:8. doi:10.1186/1471-2350-15-8.View ArticlePubMedPubMed CentralGoogle Scholar
  29. Wen AQ, Wang J, Feng K, Zhu PF, Wang ZG, Jiang JX. Effects of haplotypes in the interleukin 1beta promoter on lipopolysaccharide-induced interleukin 1beta expression. Shock. 2006;26(1):25–30. doi:10.1097/01.shk.0000223125.56888.c7.View ArticlePubMedGoogle Scholar
  30. Wen AQ, Gu W, Wang J, Feng K, Qin L, Ying C, et al. Clinical relevance of IL-1beta promoter polymorphisms (−1470, −511, and −31) in patients with major trauma. Shock. 2010;33(6):576–82. doi:10.1097/SHK.0b013e3181cc0a8e.View ArticlePubMedGoogle Scholar
  31. Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediat Inflamm. 2013;2013:165974. doi:10.1155/2013/165974.View ArticleGoogle Scholar
  32. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. 2016;44(2):275–81. doi:10.1097/CCM.0000000000001402.View ArticlePubMedGoogle Scholar
  33. Daviaud F, Grimaldi D, Dechartres A, Charpentier J, Geri G, Marin N, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16.View ArticlePubMedPubMed CentralGoogle Scholar
  34. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ. 1998;316(7139):1236–8.View ArticlePubMedPubMed CentralGoogle Scholar
  35. Sterne JA, Davey SmithG. Sifting the evidence—what’s wrong with significance tests? BMJ. 2001;322(7280):226–31.View ArticlePubMedPubMed CentralGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement