Skip to main content

Table 1 Characteristics of the included studies

From: Predictive performance of dynamic arterial elastance for arterial pressure response to fluid expansion in mechanically ventilated hypotensive adults: a systematic review and meta-analysis of observational studies

Study no. Author/year Design, setting, location, and publication language Subjects Preload dependency Vasopressor used (n) Sample size No. of fluid expansions Age (mean, years) Male (n, %) MAP at baseline (mean, mm Hg) Tide volume (mean or median mL/kg) PEEP (mean or median, cm H2O)
1 Monge García/2011 Prospective study; mixed ICU; Spain; English Mechanically ventilated hypotensive patients with acute circulatory failure Yes Yes (12) 25 25 61 15 (60.0) 58 8.6 7.9
2 Gong/2013 Retrospective study; ICU; China; Chinese Mechanically ventilated patients with distributive or hypovolemic shock Yes Yes (unknown) 32 32 66 NR NR  > 8 NR
3 Monge García/2014 Prospective study; mixed ICU; Spain; English Mechanically ventilated patients with acute circulatory failure Yes Yes (30) 53 80 63 31 (58.5) 71 8 8
4 Seo/2015 Prospective study; operating room; Republic of Korea; English Mechanically ventilated hypotensive patients receiving robot-assisted laparoscopic prostatectomy Yes No 39 39 64 39 (100) 64 8 8
5 Lanchon/2017 Retrospective study; operating room; France; English Mechanically ventilated hypotensive surgical patients Yes (part of patients) No 51 51 62 31 (60.8) 56 8.2 3
6 de Courson/2019 Prospective study; 2 operating rooms; France; English Mechanically ventilated hypotensive surgical patients Yes No 56 56 57 21 (37.5) 59 7.4 5
7 Guarracino/2019 Prospective study; ICU; USA; English Mechanically ventilated hypotensive patients with sepsis or septic shock Yes (part of patients) Yes (unknown) 55 55 69 34 (61.8) 57 6–8 NR
8 Luetrakool/2020 Prospective study; medical ICU; Thailand; English Mechanically ventilated ARDS patients with acute circulatory failure Yes Yes (12) 12 23 61 NR 61 7.2 11.5
Study no. Author/year Fluid type, volume, and duration No. of MAP responder (n, %) Threshold for MAP responsiveness Technique to measure SVV Fluid responsiveness
1 Monge García/2011 Synthetic colloid (6% hydroxyethyl starch), 500 mL, over 30 min 16 (64) MAP increase ≥ 15% Arterial waveform analysis Presence of a stable value of SVV ≥ 10%
2 Gong/2013 Colloid, 500 mL, within 30 min 19 (59.4) MAP increase ≥ 15% PICCO SVV > 10%
3 Monge García/2014 Normal saline, 500 mL, within 30 min 33 (41.2) MAP increase ≥ 10% Oesophageal Doppler Cardiac output increase ≥ 10% after a 2-min leg-raising manoeuvre
4 Seo/2015 6% Hydroxyethyl starch, 500 mL, over 20 min 17 (43.6) MAP increase ≥ 15% Arterial waveform analysis Maintenance of SVV > 10% for > 10 min
5 Lanchon/2017 6% starch, 500 mL, over 10 min 17 (33.3) MAP increase ≥ 15% Arterial waveform analysis Increase in stroke volume ≥ 15% after volume expansion
6 de Courson/2019 0.9% Saline, 250 mL, over 10 min 21 (37.5) MAP increase ≥ 10% Oesophageal
Doppler
SVV > 10%, assessed by using oesophageal Doppler
7 Guarracino/2019 0.9% Saline, 30 mL/kg, within 3 h of enrolment 35 (63.6) MAP restored to > 65 mmHg Arterial waveform analysis Cardiac index increased by > 15% after fluid expansion
8 Luetrakool/2020 Crystalloid, 500 mL, over 15 min 9 (39.1) MAP increase ≥ 10% Arterial waveform analysis Passive leg-raising test: cardiac output (CO) increase of 10% or more, or Mini-fluid challenge test: increase in velocity time integral by 10% or more after 100 mL crystalloid infusion over one minute
  1. No. number, MAP mean arterial pressure, NE norepinephrine, PEEP positive end-expiratory pressure, ICU intensive care unit, SVV stroke volume variation, NR no record, PICCO pulse indicator continuous cardiac output