Skip to main content
Fig. 1 | Annals of Intensive Care

Fig. 1

From: Three bedside techniques to quantify dynamic pulmonary hyperinflation in mechanically ventilated patients with chronic obstructive pulmonary disease

Fig. 1

A Schematic representation of the volume at end-inspiration (Vei), which is the volume at end-expiration (Vee) above the functional residual capacity plus tidal volume, measured after prolonged apnea. B Schematic representation explaining the rationale of the formula to estimate Vei, with pressure on the x-axis and volume on the y-axis. In a patient with dynamic pulmonary hyperinflation inspiration starts from the total amount of positive end-expiratory pressure (PEEPtotal). PEEPtotal can be obtained by performing an end-expiratory occlusion maneuver (i.e., zero flow conditions, after an occlusion of a few seconds PEEPtotal represents the alveolar pressure). If applied PEEP by the ventilator is 0 cmH2O, which is the case in the current study, PEEPtotal represents intrinsic PEEP (PEEPi). The patient inhales a certain volume (Vt) reaching an inspiratory pressure depending on the mechanical characteristics of the lung. By performing an end-inspiratory occlusion maneuver the plateau pressure (Pplateau) can be obtained, which corresponds to Vei. Compliance (Crs) is defined as the slope of the volume − pressure relationship, e.g., the ratio of a change in volume and pressure, for the respiratory system this means: Vt/(Pplateau −PEEPi) (1). From the figure it is clear that Crs can also be calculated as Vei/Pplateau (2). Therefore, Vei is Vee plus Vt, but also Crs times Pplateau (3). Combining [1], (2) and (3) gives Veiformula = (Vt)/Pplateau–PEEPi) * Pplateau (4) which can be rewritten as Veiformula = (Vt * Pplateau)/(Pplateau –PEEPi) (5). This rationale holds true when Crs remains constant

Back to article page