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with sepsis
Christian Niederwanger1, Mirjam Bachler2*, Tobias Hell3, Caroline Linhart4, Andreas Entenmann1, Agnes Balog1, 
Katharina Auer5 and Petra Innerhofer6

Abstract 

Background: Sepsis is associated with a deflection of inflammatory and coagulative parameters, since some clotting 
factors are known to be involved in the host’s defense against infection and inflammation. These parameters could 
play a crucial role in the course of sepsis and be used as prognostic markers in critically ill children.

Methods: A total of 250 critically ill pediatric patients diagnosed with sepsis were retrospectively analyzed to identify 
routinely measured predictors for in-hospital mortality at the peak level of C-reactive protein. Those parameters 
entered multivariate logistic regression analysis as well as a decision tree for survival.

Results: Multivariate logistic regression analysis revealed fibrinogen, platelets and activated partial thromboplastin 
time (aPTT) at the peak level of C-reactive protein to be predictors for survival (p = 0.03, p = 0.01 and p = 0.02, respec-
tively). An increase in fibrinogen and platelets is linked to survival, whereas an aPTT prolongation is associated with 
higher mortality; adjusted odds ratios (95% CI) for an increase of 100 mg/dl in fibrinogen are 1.35 (1.04–1.82) per 
50 G/l platelets 1.94 (1.3–3.29) and 0.83 (0.69–0.96) for an aPTT prolongation of 10 s. Decision tree analysis shows that 
a fibrinogen level below 192 mg/dl (90.9% vs. 13% mortality) is most distinctive in non-survivors.

Conclusions: High levels of fibrinogen and platelets as well as a non-overshooting aPTT are associated with a higher 
survival rate in pediatric patients with diagnosed sepsis. In particular, hypofibrinogenemia is distinctive for a high 
mortality rate in septic critically ill children.
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Introduction
Although the number of deaths caused by sepsis has 
drastically decreased in the last couple of decades [1], 
sepsis remains one of the main causes of mortality in 
infants and toddlers worldwide [1–3]. Sepsis in children 
peaks in the neonatal period and symptoms may be non-
specific in those patients [4], while older children may 
show hyperthermia, tachycardia, tachypnea, hypotension 

and disorders in hemostasis up to the clinical picture of 
disseminated intravascular coagulation (DIC).

Sepsis is initially characterized by excessive produc-
tion of pro-inflammatory cytokines, leukocyte activation 
and tissue damage, followed by release of anti-inflamma-
tory cytokines, leukocyte deactivation and immunosup-
pression [5]. In the later phase of sepsis, compensatory 
release of anti-inflammatory molecules is thought to 
mediate a state of immunosuppression associated with 
significant impairment of immune cell function (immu-
noparalysis) [6].

The systemic inflammation during sepsis is observed 
by measuring leukocytes, procalcitonin, C-reactive pro-
tein and others. Leukocyte count is part of the defini-
tion of sepsis, but only at extreme levels are leukocytes 
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associated with the progression of sepsis [7]. Data con-
firm that procalcitonin, which specifically increases 
in bacterial processes [8], is suitable as a diagnostic 
parameter in many cases in adults due to its high speci-
ficity [9, 10]. However, limited data are available for use 
in pediatric patients [11]. C-reactive protein reflects 
the inflammatory process and is widely used in clinical 
routine. Many studies have described an interrelation 
between an elevated C-reactive protein level and sep-
sis [12–15]. Thus, in clinical routine, daily C-reactive 
protein measurements might be used to assess the effi-
cacy of treatment [16]. C-reactive protein can also be 
an indicator of organ failure [17–21] and therefore has 
potential for the surveillance of sepsis severity.

Systemic inflammation is followed by activation of 
the coagulation system, and conversely, components of 
the coagulation system significantly affect the inflam-
matory response [22]. This cross-link occurs on sev-
eral levels: Pro-inflammatory cytokines stimulate the 
production of coagulation factors and coagulation fac-
tors mediate inflammation via binding to receptors of 
endothelium and immune cells [23]. The coagulation 
factors also play a direct role in host defense. For exam-
ple, fibrinogen modulates the immune system [24, 25] 
and acts as a chemotactical factor for monocytes and 
neutrophils [26]. Furthermore, as part of the innate 
immune system, it limits bacterial spreading by form-
ing fiber nets in which the pathogens become immobi-
lized [24].

With few exceptions, such as antithrombin or plate-
lets, the role of coagulation parameters in sepsis is largely 
ignored. New diagnostic, prognostic and therapeutic 
strategies can be deduced by observing coagulating lab-
oratory data and, where appropriate, modifying them 
in the event of excessive activation or dysregulation of 
the system [27, 28]. An increase in the pro-coagulatory 
parameters to high level is seen rather negatively in the 
inflammatory process because of their pro-thrombotic 
potential [29], although elevation of the pro-coagulatory 
parameters might be beneficial during sepsis due to their 
role in host defense.

Therefore, it is worthwhile to examine the behavior and 
influence of coagulation parameters in combination with 
the typical inflammatory parameters during sepsis. Cor-
rect interpretation of these could facilitate assessment of 
the course of sepsis in critically ill children.

Methods
This retrospective analysis comprises clinical data 
and routine laboratory parameters from 250 pediatric 
patients at the Pediatric Intensive Care Unit of Innsbruck 
Medical University Hospital.

Inclusion of patients
All medical files of patients younger than 18  years of 
age who were treated at the pediatric intensive care unit 
(PICU) between January 1, 2000, and December 31, 
2014, with the diagnosis of sepsis or systemic infection 
were reviewed. A total of 250 patients met the sepsis 
criteria of Goldstein [1]. There was no need to obtain 
oral and written informed consent from the study par-
ticipants since the data were processed anonymously. 
The study protocol was approved by the institutional 
review board of the Medical University of Innsbruck 
(AN2013-0044).

Data collection
We collected the demographic variables age, sex and 
the diagnosed underlying disease that triggered hospi-
talization. Septic shock was defined as the need for a 
vasoactive drug to maintain blood pressure in the nor-
mal range during the septic episode [1]. The C-reactive 
protein level was used to objectify the progression of 
sepsis, because it is an established parameter of sepsis 
[12–16] and is used in our clinic in children of all ages 
as opposed to IL-6 and procalcitonin.

The day on which C-reactive protein peaked was 
defined as day 0 in the report. The available routine 
parameters (fibrinogen, platelets, antithrombin, PT, 
aPTT, leukocytes) were observed from 3  days before 
until 3 days after day 0. In-hospital mortality was cho-
sen as the outcome parameter.

To evaluate changes in therapy and outcome due to 
the protracted study period, we grouped patients into 
four time cohorts (2000–2004, 2005–2007, 2008–2010 
and 2011–2014).

Statistical analysis
A mathematician not involved in the study procedures 
or patient assessment (TH) was responsible for the sta-
tistical analyses using R, version 3.4.1. All statistical 
assessments were two sided, and a significance level of 
5% was used. The hypothesis of a normal distribution 
was not reasonable for most of the continuous variables 
(Shapiro–Wilk normality test). The Wilcoxon rank sum 
test and Fisher’s exact test were applied to assess dif-
ferences between survivors and non-survivors. We pre-
sent continuous data as medians (25th–75th percentile) 
and binary variables as no./total no. (%). We show effect 
size and precision with estimated median differences 
between survivors and non-survivors for continuous 
data and odds ratios (OR) for binary variables, with 
95% CIs.

Stratified by survival, the progression of inflamma-
tion- and coagulation-related parameters from 3  days 
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prior to 3  days after the peak of C-reactive protein is 
illustrated by the sequence of the median with corre-
sponding 95% CIs in a purely descriptive manner.

In the univariate analysis, significant predictors at 
the peak of C-reactive protein as well as the respec-
tive patient’s characteristics for survival were identified. 
Those variables entered a forward–backward stepwise 
selection by Akaike information criterion (AIC) to fit a 
logistic regression model for survival [30]. We provide 
adjusted odds ratios for the remaining predictors with 
95% CIs. Receiver operating characteristic (ROC curves) 
analysis was performed, and ROC AUC is provided with 
95% CIs. In addition, with the variables that entered the 
stepwise model selection, a recursive partitioning tree for 
survival was fitted using the R package rpart (version 4.1-
11). All analyses were performed in a purely exploratory 
fashion.

Results
Patient characteristics
In total, 250 patients met the eligibility criteria for study 
inclusion and final analysis. Of those septic children, 41 
(16.4%) did not survive while in hospital. Of the criti-
cally ill children, 53.2% suffered from sepsis and 26.4% 
from severe sepsis. Septic shock was reported in 51/250 
(20.4%) children, of whom 21/51 (41.2%) died. Patients’ 
baseline characteristics stratified for survival and non-
survival are presented in Table 1.

The population consisted of 134/250 (53.6%) male 
patients, and median (25th–75th percentile) age was 35 

(6–109) months. The 22/249 (8.8%) neonates showed 
a significantly higher (p = 0.02) mortality rate, because 
8/22 (36.4%) neonates as compared to 33/227 (14.5%) 
children older than 1 month did not survive the septic 
episode. The most commonly affected organ systems 
resulting in ICU admission were the respiratory system 
in 51/250 (20.4%) and the central nervous system in 
46/250 (18.4%) children.

To rule out possible confounding due to the pro-
tracted study period (2000–2014), we grouped patients 
into four time cohorts: 80 patients were included in 
2000–2004, 56 in 2005–2007, 68 in 2008–2010 and 46 
in 2011–2014. Mortality was 12.5%, 28.6%, 13.2% and 
13%, respectively, and was not significantly associated 
with the time periods (Fisher’s exact test: p = 0.07).

Univariate analysis of parameters at the peak level 
of C‑reactive protein
As presented in Table  2, no significant difference was 
observed in C-reactive protein or leukocyte levels 
between survivors and non-survivors at the peak level 
of C-reactive protein. There was a difference in the tim-
ing between hospital admission and C-reactive protein 
peak between survivors and non-survivors (p < 0.0001) 
with non-survivors having a longer time period to 
reach the C-reactive protein peak. In contrast, fibrino-
gen, platelets and antithrombin significantly differ. This 
is also the case for aPTT and PT.

Table 1 Characteristics of patients stratified for survival and non-survival

a Binary data are presented as no./total no. (%) and continuous data as medians (25th–75th percentile)
b Odds ratio for binary variables and estimated median difference for continuous variables
c Differences between survivors and non-survivors assessed with Fisher’s exact test for binary variables and Wilcoxon rank sum test for continuous variables
d For one survivor, the exact age in months is not known

Characteristicsa Total (n = 250) Survivors (n = 209) Non‑survivors (n = 41) Estimate with 95%  CIb p  valuec

Female gender 116/250 (46.4%) 97/209 (46.4%) 19/41 (46.3%) 1 (0.48 to 2.06) 1

Aged (months) 34.83 (6.47–108.63) 35.5 (7.16–111.45) 23.8 (1.43–81.97) 3.33 (− 6.55 to 18.07) 0.2725

Neonates < 1 month 22/249 (8.8%) 14/208 (6.7%) 8/41 (19.5%) 3.34 (1.12 to 9.34) 0.0149

Infants 1–3 months 24/249 (9.6%) 20/208 (9.6%) 4/41 (9.8%) 1.02 (0.24 to 3.28) 1

Diagnosed underlying disease

Central nervous system 46/250 (18.4%) 34/209 (16.3%) 12/41 (29.3%) 2.12 (0.89 to 4.82) 0.075

Cardiovascular 39/250 (15.6%) 31/209 (14.8%) 8/41 (19.5%) 1.39 (0.51 to 3.45) 0.4808

Digestive tract 41/250 (16.4%) 32/209 (15.3%) 9/41 (22%) 1.55 (0.59 to 3.74) 0.3546

Respiratory system 51/250 (20.4%) 41/209 (19.6%) 10/41 (24.4%) 1.32 (0.53 to 3.05) 0.5258

Oncologic 37/250 (14.8%) 31/209 (14.8%) 6/41 (14.6%) 0.98 (0.31 to 2.64) 1

Kidney 30/250 (12%) 22/209 (10.5%) 8/41 (19.5%) 2.05 (0.73 to 5.31) 0.1169

Liver 18/250 (7.2%) 15/209 (7.2%) 3/41 (7.3%) 1.02 (0.18 to 3.87) 1

Skin 11/250 (4.4%) 10/209 (4.8%) 1/41 (2.4%) 0.5 (0.01 to 3.68) 1

Other diagnosis 30/250 (12%) 25/209 (12%) 5/41 (12.2%) 1.02 (0.29 to 2.97) 1



Page 4 of 10Niederwanger et al. Ann. Intensive Care           (2018) 8:111 

Progression of parameters around the peak level 
of C‑reactive protein
The course of fibrinogen and antithrombin seems to be 
associated with the progression of C-reactive protein 
(Figs.  1, 2). Fibrinogen concentration followed the pro-
gression of C-reactive protein in survivors, but not in 
non-survivors. Note that for the main portion of the sur-
vivors, fibrinogen levels increased distinctly above the 
norm values around day 0.

Antithrombin levels were constantly higher in survi-
vors than in non-survivors, but, in contrast to fibrinogen, 
irrespective of the progression of C-reactive protein. In 
survivors, platelets decreased slightly over time, while 
patients who did not survive showed a sharp decline in 
platelets already 2  days before the peak level of C-reac-
tive protein was reached. Survivors showed significantly 
higher PT levels and shorter aPTT around the peak of 
C-reactive protein. Progression of leukocytes between 
survivors and non-survivors is comparable up to day 2.

CRP, fibrinogen, platelets, aPTT, PT and antithrombin 
levels were comparable between time cohorts (Kruskal–
Wallis test: p = 0.40, p = 0.32, p = 0.58, p = 0.90, p = 0.17 
and p = 0.22, respectively). Leukocyte count signifi-
cantly differed between time cohorts (Kruskal–Wal-
lis test: p = 0.04). Median leukocyte counts in G/l were 
12.3 (6.13–20) in 2000–2004, 12.1 (6.8–17.1) in 2005–
2007, 10.3 (3.1–16.4) in 2008–2010 and 7.7 (2.8–12) in 
2011–2014.

Multivariate logistic regression analysis for survival
The following significant univariate predictors for sur-
vival entered a stepwise model selection: fibrinogen, 
platelets, antithrombin, aPTT, PT and age. The resulting 
logistic regression model for survival includes fibrino-
gen, platelets and aPTT as variables, all of them being 
significant predictors for survival (p = 0.03, p = 0.01 and 
p = 0.02, respectively).

Figure  3 shows the adjusted odds ratios (95% CI) 
retrieved from logistic regression. An increase in fibrino-
gen and platelets is linked to survival, whereas aPTT pro-
longation is associated with higher mortality. An increase 
of 100 mg/dl in fibrinogen increases the survival chance 
by 26%, per 50 G/l platelets by 48.4%, and aPTT prolon-
gation of 10 s increases the mortality risk by 20.8%.

Adding the time cohort or the year of CRP peak as 
input variables resulted in the identical logistic regression 
model after stepwise model selection.

The ROC analysis (Additional file  1) for survival pre-
dicted by fibrinogen, platelets and aPTT resulted in an 
AUC of 0.74 (0.63–0.85), 0.71 (0.63–0.79) and 0.81 (0.73–
0.90), respectively.

Decision tree for survival
To gain a deeper insight into the interplay of coagulation 
parameters leading to death in septic children, a deci-
sion tree was fitted using the univariate predictors at the 
peak level of C-reactive protein and age to explore these 
interrelations.

The obtained classification tree (see Fig. 4) shows that 
most distinctive in non-survivors is a fibrinogen level 
below 192  mg/dl [90.9% (58.7–99.8%) vs. 13% (8.1–
18.5%) mortality]. For patients presenting with a fibrino-
gen level of at least 192 mg/dl, an aPTT of less than 58 s 
is associated with better outcome [8.4% (5.0–13.1%) vs. 
37.8% (22.5–55.2%) mortality]. If, in addition, patients 
show a platelet count of at least 80 G/l, a low mortality 
rate is observed [4.1% (1.5–8.7%) vs. 20% (10.4–33.0%) 
mortality]. Patients with a platelet count below 80 
G/l and younger than 1.2  months show high mortal-
ity as compared to older [57.1% (18.4–90.1%) vs. 14.6% 
(6.1–27.8%)].

In the case of a fibrinogen level of at least 192  mg/dl 
and an aPTT prolongation of 58 s or more, antithrombin 
levels below 58% led to lower mortality [25% (9.8–46.7%) 

Table 2 Parameters at the peak level of C-reactive protein stratified for survival and non-survival

a Data are presented as medians (25th–75th percentile)
b Estimated median difference
c Differences between survivors and non-survivors assessed with Wilcoxon rank sum test for continuous variables
d Number of missing measurements in survivors/non-survivors

Parametersa Total (n = 250) Survivors (n = 209) Non‑survivors (n = 41) Estimate with 95%  CIb p  valuec Not  knownd

C-reactive protein (mg/dl) 18.5 (9.8–28.4) 18.6 (10–28) 17.6 (7.9–31.9) − 0.13 (− 5.3 to 4.55) 0.9491 0/0

Fibrinogen (mg/dl) 506 (329–675) 518 (383–685) 279 (173–514) 206 (118 to 289) < 0.0001 56/9

Platelets (G/l) 124 (50–232) 147 (62.5–247) 63 (29–98) 74 (37 to 111) < 0.0001 5/0

aPTT (s) 47 (38–56) 46 (36–53) 64 (53.5–83) − 20 (− 28 to − 13) < 0.0001 59/15

PT (%) 71 (51–84) 74 (55–85) 49 (36–71.5) 20 (10 to 30) 0.0001 59/14

Antithrombin (%) 63 (47–81) 65.5 (50–82) 51 (40–66) 14 (5 to 23) 0.0045 75/10

Leukocytes (G/l) 10.4 (4.6–17.8) 11.1 (5.3–17.5) 8.2 (3–20) 1.4 (− 1.6 to 5.1) 0.3342 4/5
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vs. 61.5% (31.6–86.1%)], especially in patients exceeding 
an aPTT of 66 s [0% (0.0–24.7%) vs. 54.5% (23.4–83.3%) 
mortality].

The identical decision tree was obtained when the 
time cohort or the year of C-reactive protein peak was 
added as predictors for survival, indicating that there 
was no confounding due to the protracted study period 
(2000–2014).

In order to predict mortality with fibrinogen < 192 mg/
dl, platelets < 80  G/l and aPTT > 58  s, sensitivity and 
specificity were calculated (Additional file 2).

Age‑adjusted hypofibrinogenemia
The fibrinogen level of each child was classified as hypo-, 
normo- or hyperfibrinogenemia according to the age-
dependent norm value ranges. For normal fibrinogen val-
ues, please see the table in Additional file 3.

Patients presenting with hypofibrinogenemia have a 
significantly higher mortality rate than do patients with 
normo- or hyperfibrinogenemia: OR 28.42 (5.42–284.81), 
p < 0.0001. As depicted in Fig. 5, 82% of the patients with 
low fibrinogen levels died, whereas the mortality rate in 
patients with fibrinogen levels within the normal range 
was 22% and 10% in children with an elevated fibrinogen 
level.

No significant difference in the occurrence of a diag-
nosed thromboembolic event was observed for the 5/128 
(3.9%) children with hyperfibrinogenemia as compared 
to the 4/56 (7.1%) patients with fibrinogen within the 
normal values or below: OR 0.53 (0.11–2.78), p = 0.46.

Discussion
In this study, we investigated the impact of routinely 
measured coagulation and inflammation parameters on 
in-hospital survival in pediatric patients diagnosed with 
sepsis. The main result is that C-reactive protein at its 
peak level does not significantly differ between survi-
vors and non-survivors, whereas fibrinogen, platelets and 
aPTT are predictors of survival. An increase in fibrinogen 
and platelets is linked to survival, whereas aPTT prolon-
gation is associated with higher mortality. Most distinc-
tive for mortality are fibrinogen levels below 192 mg/dl. 
Especially in children younger than 1.2 months, isolated 
thrombocytopenia is associated with poor outcome. In 
general, age-adjusted hypofibrinogenemia is significantly 
associated with a poor chance of survival.

In some points, these results stand in contrast to 
findings reported in the literature. Several studies claim 
that C-reactive protein is of prognostic value in sepsis 
[12–15]. However, in our study focusing on mortality, 
C-reactive protein levels did not allow any differentia-
tion between survivors and non-survivors during the 
observation period of 7 days. Most likely, in children as 
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well as in adults with diagnosed sepsis C-reactive pro-
tein levels are highly elevated without predicting final 
outcome.

Among the variables routinely measured in our study 
at the peak level of C-reactive protein, multivariate 
analysis revealed that only three of these coagulation 
parameters are essential for the prediction of survival 
in septic children: An increase in fibrinogen and plate-
lets lowers the mortality risk, while a prolongation of 
aPTT increases the risk.

We found that hypofibrinogenemia is associated with 
very high mortality. This is in accordance with Esroy 
et  al., who also confirm in their study that deceased 
patients exhibited significantly lower fibrinogen levels 
than did survivors [31]. Moreover, in baboons, survivors 
had higher fibrinogen levels than did non-survivors after 
induced sepsis [32]. This was also found in several earlier 
studies with fibrinogen-deficient mice following induced 
sepsis [33, 34].

The reason why fibrinogen is associated with survival 
in sepsis could be that it helps the immune system limit 
bacterial growth and enhance bacterial clearance [35]. 
The fibrin net captures and immobilizes invasive bacte-
ria [24], thus restricting local spreading [24, 36]. Once 
the fibrinolysis sets in, plasminogen releases fibrino-
gen-derived so-called antimicrobial peptides (AMPs), 
thus causing an antimicrobial environment to arise 
within the clot. Such a peptide is the Bß15–42 frag-
ment, and an unambiguous antimicrobial effect of this 
protein was already proven by S. aureus, group A Strep-
tococcus (GAS) and group B Streptococcus (GBS) [25]. 
Besides that, this peptide binds to the VE cadherin of 
the endothelial cells and thus reinforces the tight junc-
tions, which has a positive effect on organ failure and 
survival during sepsis [37, 38]. The importance of fibrino-
gen, fibrinolysis and the consequently released peptides 
during sepsis and their beneficial impact on infection, 
multiple-organ dysfunction and reduced mortality have 
already been proven in several studies [39–41].

In our study, age-adjusted hyperfibrinogenemia is 
associated with increased survival in sepsis. In stud-
ies of adult patients, this connection between acute and 
transient fibrinogen levels in the context of sepsis and 
survival was also observed [42]. In this context of high 
levels of pro-thrombotic factors, the fear of a hypercoag-
ulatory state during sepsis is present and justified, since 
this could contribute to the development of thrombo-
sis. In our study, the incidence rate of thromboembolic 
events was not significantly increased in patients with 
hyperfibrinogenemia.

Low fibrinogen levels may reflect ongoing consump-
tion and deposition, development of DIC and MODS [43, 
44]. Sepsis itself also causes severe damage to the liver, 
via hemodynamic changes as well as the direct or indirect 
destruction of hepatocytes or both [45]. The destroyed 
hepatocytes are no longer able to synthesize a sufficient 
amount of fibrinogen, which might be another reason for 
the low fibrinogen levels in non-survivors.

High concentrations of fibrinogen before the C-reac-
tive protein peak in our study rarely coincided with 
platelet concentrations below the critical limit of 
100 G/l. Low platelets in addition to low fibrinogen lev-
els result in weak clot firmness, which is known to lead 
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to poor outcome [4, 46]. Especially in neonates, iso-
lated thrombocytopenia leads to increased mortality. 
This may be explained by the fact that during the first 
6  weeks after birth, the plasmatic coagulation cascade 
is not fully developed and therefore hemostatic compe-
tence heavily relies on platelet function [47].

Overall, a decreased platelet count is associated with 
mortality. This might be due to the fact that thrombo-
cytes are also an important part of the innate immune 
system. Whenever pathogens are present, platelets 
bind to them via the glycoprotein receptor IIb/IIIa and 
Toll-like receptors. That either happens directly, or it is 
mediated by plasma proteins like fibrinogen [48]. The 
activated platelets release antimicrobial peptides like 
defensins, kinocidins and thrombocidins to kill bacte-
ria. In addition, they release members of the chemokine 
family like platelet factor 4 (PF4, CXCL-4) in order to 
attract other immune cells [49, 50].

The third coagulation parameter essential for the 
prediction of mortality in septic children in our study 
was aPTT. Prolongation leads to poorer outcome. A 
long aPTT might reflect the most severe cases of sep-
sis due to consumption of coagulation factors or high-
dose heparin therapy, but may also be caused by a 
FXII deficiency. In septic patients, FXII deficiency can 
be protective via attenuation of the FXII-dependent 
bradykinin generation, complement activation and fur-
ther contact pathway activation. This consequence of 
low FXII levels might explain why 13/13 children with 
fibrinogen levels above 192  mg/dl and an aPTT above 
66 s survived, despite an antithrombin level below 58.

Compared with developed countries, at 16.4% the over-
all mortality of our children was in the upper frame [51, 
52]. Due to the tertiary care status of our university hos-
pital, the study included a large number of seriously ill 
children. Of them, 20.4% developed septic shock with a 
mortality rate of 41.2%. The literature reports a mortality 
rate of 20–30% in the presence of septic shock [53, 54], 
which increases to 52% in the case of additional MODS.

The limitations of our study have to be mentioned. The 
retrospective design of the study precludes assessment 
of causal relationships. Nevertheless, the main finding 
that high fibrinogen levels are beneficial in sepsis can 
be well explained by recently reported pathophysiologi-
cal mechanisms. Further, not all the considered param-
eters were available throughout the observation period of 
7 days. Especially for children who died rapidly or were 
transferred to another hospital soon after C-reactive 
protein peaked, data are lacking and a bias could be pre-
sent in the consecutive days due to the smaller sample 
size. Therefore, the main analyses were performed solely 
on the day of C-reactive protein peak. The number of 
250 sepsis cases diagnosed in children over a period of 
14 years could be considered low. A deeper insight might 
be gained in a prospective setting.

Interpretation of the results of the multivariate logistic 
regression analysis for survival and decision tree analysis 
should be done carefully, since it cannot be concluded 
that these coagulation parameters are independently 
associated with survival because major well-known risk 
factors for death such as organ dysfunction or lactate 
were not taken into account. These analyses were used 
solely in an explorative fashion to describe the relation of 
the inflammatory and coagulatory parameters to survival. 
Therefore, this study is mainly descriptive and cannot 
determine the predictive value of coagulation parameters 
for outcome after sepsis. Another limitation is the fact 
that some values, such as low fibrinogen or low platelets, 
might have led to interventions that were not captured 
by this retrospective study. This could have influenced 
the magnitude of the associations. Despite all limitations, 
this study gives new insight into the course of sepsis and 
provides a good basis for a prospective study using these 
parameters as proxy for mortality, like organ dysfunction 
resolution or new and progressive MODS.

Conclusion
The link between inflammation and coagulation plays 
a crucial role in children with sepsis. C-reactive pro-
tein does not allow discrimination between survivors 
and non-survivors. In contrast, increased levels of 
fibrinogen and platelets are linked to survival and dis-
tinctively reflect the inflammatory process. Prolonged 
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aPTT is associated with lower survival, which might 
reflect therapy-related measures needed due to disease 
severity.

Additional files

Additional file 1. Receiver operating characteristic (ROC) curves and area 
under the ROC curve (AUC) values for survival. The ROC curves showing 
the predictive value of fibrinogen. (A) Platelets (B) and aPTT (C). ROC AUC 
is provided with 95% CIs.

Additional file 2. Sensitivity and specificity analysis for mortality of 
fibrinogen, platelets and aPTT.

Additional file 3. Fibrinogen (Clauss method) norm value ranges for 
female and male children.
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