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Abstract 

Background Healthcare‑associated infections involving Gram‑negative bacteria (GNB) with difficult‑to‑treat resist‑
ance (DTR) phenotype are associated with impaired patient‑centered outcomes and poses daily therapeutic chal‑
lenges in most of intensive care units worldwide. Over the recent years, four innovative β‑lactam/β‑lactamase 
inhibitor (BL/BLI) combinations (ceftolozane–tazobactam, ceftazidime–avibactam, imipenem–relebactam and mero‑
penem–vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment 
of certain DTR‑GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical effi‑
cacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care 
Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unan‑
swered questions on these issues.

Methods A systematic search for English‑language publications in PUBMED and the Cochrane Library database 
from inception to November 15, 2022.

Results These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe 
infections for whom polymyxin‑ and/or aminoglycoside‑based regimen were historically used as last‑resort strate‑
gies—namely, ceftazidime–avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)‑ or OXA‑
48‑like‑producing Enterobacterales, meropenem–vaborbactam for KPC‑producing Enterobacterales, ceftazidime–
avibactam/aztreonam combination or cefiderocol for metallo‑β‑lactamase (MBL)‑producing Enterobacterales, 
and ceftolozane–tazobactam, ceftazidime–avibactam and imipenem–relebactam for non‑MBL‑producing DTR 
Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended‑infusion scheme 
(except for imipenem–relebactam) may be indicated for DTR‑GNB with high minimal inhibitory concentrations and/
or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials 
remains under‑investigated, notably for the most severe presentations. Other important knowledge gaps include 
pharmacokinetic information in particular situations (e.g., pneumonia, other deep‑seated infections, and renal 
replacement therapy), the hazard of treatment‑emergent resistance and possible preventive measures, the safety 
of high‑dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical 
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utilization, and optimal treatment durations. Comparative clinical, ecological, and medico‑economic data are needed 
for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen.

Conclusions New BL/BLI combinations and cefiderocol represent long‑awaited options for improving the manage‑
ment of DTR‑GNB infections. Several research axes must be explored to better define the positioning and appropriate 
administration scheme of these drugs in critically ill patients.

Keywords Cefiderocol, Ceftolozane–tazobactam, Ceftazidime–avibactam, Meropenem–vaborbactam, Imipenem–
relebactam, Aztreonam, Enterobacterales, Pseudomonas aeruginosa, Carbapenem resistance, Intensive care unit

Introduction
Carbapenems stand as the main option for the treat-
ment of severe infections due to Gram-negative bac-
teria (GNB) exhibiting resistance to broad-spectrum 
penicillins and cephalosporins [1–3]. Yet, the dis-
semination of carbapenem-resistant GNB, either at an 
endemic state or during outbreak phenomenon, now 
poses daily therapeutic challenges in most of intensive 
care units (ICU) worldwide [4–8]. Infections involving 
carbapenem-resistant GNB are associated with a sub-
stantial rise in fatality rates, length of hospital stay and 
costs of care when compared to those caused by car-
bapenem-susceptible isolates [9–14]. These impaired 
outcomes may result from a higher likelihood of inad-
equate empirical therapy, toxicity attributable to his-
torical last-resort agents (e.g., polymyxin-related acute 
kidney injury), and the frailty of individuals in whom 
such conditions predominantly occur [15]. In addition, 
most of carbapenem-resistant GNB are resistant to 
other antimicrobial classes, further complicating the 
management of infected patients—hence, co-resist-
ance to carbapenems, all other first-line β-lactams and 
fluoroquinolones is consensually defined as difficult-
to-treat resistance (DTR) [1–3].

Over the recent years, four innovative β-lactam/β-
lactamase inhibitor (BL/BLI) combinations (namely, 
ceftolozane–tazobactam, ceftazidime–avibactam, imi-
penem–relebactam and meropenem–vaborbactam) 
and a new siderophore cephalosporin (cefiderocol) 
have been introduced and approved for the treat-
ment of certain DTR-GNB infections. The literature 
addressing their microbiological spectrum, pharma-
cokinetics, clinical efficacy and safety in critically ill 
patients has been exhaustively audited by our group 
to support the guidelines of the French Intensive Care 
Society, elaborated during a consensus conference 
held in Paris on November 30, 2022 and published in 
this issue of Annals of Intensive Care. In this narra-
tive review, we summarize the available evidence and 
knowledge gaps on these questions, with a focus on 
DTR-GNB infections.

Methods
We systematically searched PubMed and the Cochrane 
Library database from inception to November 15, 2022. 
The search terms are listed in Additional file  1 of this 
article. We manually searched the reference lists of the 
included studies and systematic reviews to select addi-
tional relevant articles. Studies published in languages 
other than English were not retained.

Current epidemiology of DTR‑GNB in critically ill 
patients
Critically ill patients present a marked predisposition 
for DTR-GNB infection as a combined result of massive 
exposure to broad-spectrum antimicrobials damaging 
the resident microbiotas and their inherent coloniza-
tion resistance functions, and repeated opportunities for 
cross-transmission ensuing from invasive procedures 
and prolonged hospitalization [16, 17]. Enterobacterales 
(primarily Klebsiella pneumoniae and Escherichia coli), 
Pseudomonas aeruginosa, Acinetobacter baumannii and 
Stenotrophomonas maltophilia account for virtually all 
healthcare-associated DTR-GNB infections in the ICU.

Carbapenem resistance in Enterobacterales depends 
almost exclusively on the acquisition and expression 
of plasmid-borne carbapenemases belonging to the A 
(mostly Klebsiella pneumoniae carbapenemase [KPC]), B 
(metallo-β-lactamases [MBL], especially New-Delhi MBL 
[NDM]) or D (oxacillinases, mainly OXA-48-like carbap-
enemases) classes of the Ambler’s scheme (Table 1) [18, 
19]. The prevalence of carbapenemase-producing Enter-
obacterales (CPE) is increasing globally, with a marked 
trend for MBL-producing isolates—this pandemic shows 
large geographical disparities, with a North/South gra-
dient and higher prevalence in low- and middle-income 
countries (Table  2) [8, 20–23]. Endemic states have 
been reached in Italy, Greece and the United States for 
KPC producers, in the India/Pakistan region for NDM 
producers, and in the India/Pakistan and Mediterra-
nean regions for OXA-48 producers; however, sporadic 
outbreaks are now regularly reported in other areas, 
including Latin America, Oceania, Africa and North-
ern Europe [24]. In 2017, in the 37 European countries 
contributing to the eCDC surveillance program, the 
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prevalence of carbapenem resistance among invasive iso-
lates of K. pneumoniae and E. coli ranged from 0 to 65% 
and from 0% to 1.6%, respectively; 16 (43%) countries 

reported regional or interregional spread of CPE while 
four countries (Greece, Italy, Turkey and Malta) declared 
an endemic situation [25]. In France, CPE infections 

Table 1 In vitro activity of novel β‑lactam/β‑lactamase inhibitor combinations and cefiderocol against carbapenem‑resistant Gram‑
negative bacteria

From references [31–35, 38, 40, 42–45, 50, 51, 54, 56–60, 63, 64, 66, 68, 69, 74, 75]

Susceptibility profiles are indicated for carbapenem-resistant isolates only

KPC: Klebsiella pneumoniae carbapenemase; MBL: metallo-β-lactamase; NDM: New-Delhi MBL; MIC: minimal inhibitory concentration
a OXA-48 and derivatives (e.g., OXA-181 and OXA-232)—note that these β-lactamases hydrolyze penicillins and carbapenems but not broad-spectrum cephalosporins; 
bNDM is the main MBL type in Enterobacterales (other types such as VIM are less common); cmain efflux pump systems implicated in carbapenem resistance in P. 
aeruginosa are MexAB-OprM and MexEF-OprN; dvarious MBL types (VIM, IMP, NDM, SPM)—other carbapenemase types are occasionally documented in P. aeruginosa, 
including class A (KPC and GES) and C (OXA-48-like) carbapenemases; emainly OXA-23-, OXA-24/40-, and OXA-58–like enzymes; fceftolozane–tazobactam is not active 
against carbapenemase-producing isolates of P. aeruginosa; gintrinsic resistance or limited susceptibility (species); hactivity resting on the combination of aztreonam 
and avibactam (see the text for explanations); i no defined EUCAST breakpoint (insufficient data)

Main mechanisms 
of carbapenem 
resistance

Enterobacterales Pseudomonas 
aeruginosa

Acinetobacter 
baumannii

Stenotrophomonas 
maltophilia

Class A 
carbapenemase
(KPC)

Class D 
carbapenemase
(OXA-48-likea)

Class B 
carbapenemase
(MBLb)

OprD2 mutation 
Effluxc

MBLd

OXAe Chromosomal MBL

Ceftolozane–tazobac‑
tam

– – – +++
75%‑90% f

–g –g

Ceftazidime–avibactam +++
96%‑99%

+++
96%‑99%

– ++
60%‑70%

–g –g

Ceftazidime–avibactam
plus aztreonam

+++
96–99%

+++
96%‑99%

+++
> 90%

± (MBL)
0–25%

–g ++h

~ 85%

Meropenem–vabor‑
bactam

+++
95–99%

– – – – –g

Imipenem–relebactam +++
88%‑95%

± – ++
70%‑90%

– –g

Cefiderocol +++
84–91%

+++
88–93%

++
VIM: 79%‑81%
NDM: 41%‑51%

+++
> 90%

+++i

MIC ≤ 2 mg/L 
for > 90% 
of isolates

+++i

MIC ≤ 2 mg/L for > 90% 
of isolates

Table 2 Prevalence of carbapenem resistance among Gram‑negative bacteria isolated from clinical samples in selected national and 
international surveillance networks

HA: hospital-acquired; BSI: bloodstream infection; DA-HAI: device-associated healthcare-associated infection; ICU: intensive care unit; VAP: ventilator-associated 
pneumoniae; CR: catheter-related
a Community-onset pneumonia requiring hospitalization and hospital-acquired pneumonia (pooled); bcommunity-onset infections and hospital-acquired infections 
(pooled)

Surveillance network CHINET CDC/NHSN SENTRY SENTRY SENTRY EB-2 EARS-Net SPIADI SPIADI

Geographical area China USA USA Western Europe Eastern Europe Worldwide Europe France France

Sample collection, 
period

2016 2015–2017 2016–2019 2016–2019 2016–2019 2019–2020 2021 2021 2021

Infection type HA-BSI DA-HAI Pneumonia a Pneumoniaa Pneumoniaa HA-BSI (ICU) Allb VAP
(ICU)

HA-CR-BSI

References [20] [21] [22] [22] [22] [23] [8] [211] [211]

Enterobacterales
Escherichia coli
Klebsiella pneumoniae

–
1.6%
42.9%

–
0.7%
6.9%

–
0.5%
4.7%

–
0.4%
8.7%

–
0.5%
17.5%

–
7.4%
37.8%

–
0.2%
11.7%

–
–
–

0.6%
–
–

Pseudomonas aerugi-
nosa

24.3% 20.7% 25.2% 23.1% 51.7% 33.2% 18.1% 20.8% 9.0%

Acinetobacter bauman-
nii

57.7% 43.2% 41.2% 54.2% 89.6% 84.6% 39.9% 22.8% –
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remain infrequent, with less than 1000 cases reported 
annually [26], in line with a low prevalence of coloniza-
tion—indeed, in a recent study including 2396 hospital-
ized patients, the rate of intestinal carriage of CPE was 
still 1.2% [27].

In Pseudomonas aeruginosa, carbapenem resistance 
rests on both plasmid-borne carbapenemases (mostly 
MBL such as VIM, IMP, NDM or SPM) and chromo-
somal mutations leading to over-expression of efflux 
pump systems or impermeability through porin D2 
alterations [18]. The overall prevalence of carbapenem 
resistance in invasive isolates of P. aeruginosa fluctuates 
between 10 and 20% in most geographic areas [8, 20, 
22, 23], with a variable proportion of DTR phenotypes 
that may locally increase owing to outbreaks related to 
certain high-risk clones (Table  2) [28, 29]. Next, as for 
Enterobacterales, carbapenem resistance in Acinetobac-
ter baumannii is predominantly driven by plasmid-borne 
carbapenemases, with OXA-23 as the leading type [19]. 
Rates of carbapenem resistance in invasive isolates of A. 
baumannii have reached critical levels in the Mediterra-
nean area, South-East Asia and, to a lesser extent, South-
ern Europe (Table 2). In a recent global study including 
350 critically ill patients with hospital-acquired blood-
stream infection due to A. baumannii, 296 (84.6%) were 
infected by CR isolates [23]. Lastly, Stenotrophomonas 
maltophilia expresses a chromosomally encoded MBL 
that confers intrinsic carbapenem resistance to the spe-
cies [18]. Infections due to this pathogen mostly occur 
in critically ill and/or immunocompromised hosts, espe-
cially in those with prior exposure to carbapenems or 
other broad-spectrum β-lactams [30]. Resistance to both 
cotrimoxazole and fluoroquinolones may pragmatically 
correspond to a DTR phenotype though there is no con-
sensual definition for this species.

Bacterial spectrum of cefiderocol and new BL/BLI 
combinations
In vitro activity against carbapenemase-producing 
Enterobacterales
Avibactam is a potent inhibitor of serine-β-lactamases 
(that is, Ambler’s classes A, C and D); therefore, cef-
tazidime–avibactam is active in  vitro against 96–99% 
of KPC- and OXA-48-like-producing Enterobacterales 
(Table 1) [31–35]. Yet, resistance to ceftazidime–avibac-
tam may emerge following mutations in KPC-encoding 
genes (mainly blaKPC-2 and blaKPC-3) or genes encoding 
outer membrane proteins (OmpK35-37), especially when 
associated with a high number of blaKPC-2 copies [36–39]. 
MBL-producing Enterobacterales are resistant to ceftazi-
dime–avibactam since avibactam has no inhibitory effect 
on these enzymes. However, the combination of ceftazi-
dime–avibactam plus aztreonam is active against around 

80% of MBL-producing Enterobacterales [40], aztreonam 
being not hydrolyzed by MBL and avibactam inhibiting 
the other β-lactamases commonly co-produced by such 
isolates (e.g., hyperproduced AmpC cephalosporinases, 
extended-spectrum β-lactamases [ESBL], or class A car-
bapenemases such as KPC, all including aztreonam in 
their hydrolysis spectrum) [41, 42].

Relebactam and vaborbactam inhibit class A 
β-lactamases, without effect on MBL or OXA carbapen-
emases [43]. Imipenem–relebactam and meropenem–
vaborbactam are active in  vitro against 88–95% and 
95–99% of KPC-producing Enterobacterales, respectively 
[43–45]. Certain KPC variants and ESBL co-expres-
sion have been linked with a rise in minimal inhibitory 
concentrations (MIC) of imipenem–relebactam while 
over-expression of blaKPC may increase those of mero-
penem–vaborbactam; in addition, porin mutations 
(OmpK35, OmpK 36) can reduce the activity of both 
drugs [46–48]. Importantly, these combinations remain 
occasionally active against isolates producing KPC-2 or 
KPC-3 variants with reduced susceptibility to the inhibi-
tory effect of avibactam [45, 49].

Cefiderocol is a poor substrate for all β-lactamase 
classes and shows in  vitro activity against 84–81%, 
88–93%, 79–81% and 41–51% of KPC-, OXA-48-, 
VIM- and NDM-producing Enterobacterales, ESBL co-
expression and porin mutations being associated with a 
reduced activity of the drug [50, 51]. Also, the inoculum 
effect—that is, an elevation of MIC values for high bacte-
rial concentrations [52]—appears more pronounced with 
cefiderocol than with other new agents though the clini-
cal significance of this finding is not yet elucidated [53].

The MIC cut-off values of novel BL/BLI combinations 
and cefiderocol for Enterobacterales, as defined by the 
European Committee on Antimicrobial Susceptibility 
Testing (EUCAST), are exposed in Table 3. Importantly, 
ceftolozane is hydrolyzed by all described carbapen-
emases, none of which being inhibited by tazobactam; 
therefore, ceftolozane–tazobactam exerts no activity 
against CPE [54, 55].

In vitro activity against carbapenem-resistant 
non-fermenting GNB
Ceftolozane circumvents two major mechanisms of 
β-lactam resistance in P. aeruginosa—namely, efflux and 
AmpC-mediated hydrolysis [56]. This fifth-generation 
cephalosporin, independently of its association with 
tazobactam, is active in  vitro against 75–90% of non-
carbapenemase-producing carbapenem-resistant P. aer-
uginosa isolates and, more globally, against 40–80% of 
DTR isolates within this species [54, 57–61]. Resistance 
to ceftolozane–tazobactam in P. aeruginosa depends 
on either certain plasmid-borne β-lactamases (e.g., 
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MBL, OXA-14, OXA-19, OXA-35, GES-9, or PER-1) or 
extreme over-expression of chromosomal AmpC [62]. A. 
baumannii and S. maltophilia are intrinsically resistant 
to ceftolozane.

Both avibactam and relebactam inhibit chromosomal 
AmpC in P. aeruginosa. Ceftazidime–avibactam and imi-
penem–relebactam are active against 65%-85% of DTR 
isolates of P. aeruginosa [57–59, 63, 64]. Avibactam does 
not restore ceftazidime activity in MBL-producing iso-
lates or in those with over-expressed efflux pump systems 
for which ceftazidime is a substrate. Relebactam may 
restore imipenem activity is isolates with mutated D2 
porin and derepressed AmpC, likely due to the limited 
but significant hydrolysis of imipenem by this enzyme 
[65]. These two combinations lack activity against car-
bapenemase-producing isolates of A. baumannii and 
against S. maltophilia, this later species being intrinsi-
cally poorly susceptible to ceftazidime and resistant to 
imipenem [18]. Meropenem–vaborbactam is not active 
against meropenem-resistant isolates of P. aeruginosa 
or A. baumannii due to the lack of inhibitory effect of 
vaborbactam on mechanisms of meropenem resistance 
in these species (that is efflux, impermeability, or carbap-
enemase production).

Cefiderocol is active in vitro against 90% to 95% of car-
bapenem-resistant isolates of P. aeruginosa [66–69]. No 
MIC threshold of cefiderocol is currently defined by the 
EUCAST for A. baumannii and S. maltophilia; however, 
more than 90% of isolates within these species show MIC 
values below 2 mg/L (i.e., the cut-off value for Enterobac-
terales and P. aeruginosa) [69].

A key-point is that the multiplicity of potentially 
involved resistance mechanisms makes unpredictable the 
activity of new β-lactams in DTR P. aeruginosa. Indeed, a 
substantial proportion of isolates exhibiting resistance to 
one agent remains susceptible to others, which implies to 
perform susceptibility tests for all novel BL/BLI combi-
nations and cefiderocol in isolates with such phenotypes 

[70]. Of note, gradient test strips are not accurate to 
measure cefiderocol MICs [71, 72], which should be 
determined using broth microdilution methods [73].

Interestingly, a combination of ceftazidime–avibactam 
and aztreonam may have high in  vitro activity against 
cotrimoxazole- and fluoroquinolone-resistant isolates of 
S. maltophilia, a species that expresses a chromosomal 
AmpC cephalosporinase susceptible to the inhibitory 
effect of avibactam in addition to its chromosomal MBL 
[74, 75].

In vitro activity against other relevant pathogens 
responsible for infections in critically ill patients
ESBL are class A serine-β-lactamases that are susceptible 
to the inhibitory effect of both tazobactam and avibac-
tam. Avibactam also inhibits AmpC cephalosporinases 
while tazobactam does not. Therefore, both ceftolo-
zane–tazobactam and ceftazidime–avibactam are active 
against ESBL-producing Enterobacterales without AmpC 
co-expression but only the latter combination is active 
against isolates co-producing ESBL and derepressed 
ampC (e.g., Enterobacter spp) [76]. Imipenem–relebac-
tam and meropenem–vaborbactam are highly active 
against ESBL-producing Enterobacterales due to the 
intrinsic activity of carbapenems on these pathogens [43, 
77].

Gram-positive bacteria and most of cultivable anaer-
obes are intrinsically resistant to ceftolozane–tazobac-
tam, ceftazidime–avibactam and cefiderocol [78–80]. 
The activity of imipenem–relebactam and meropenem–
vaborbactam on these pathogens does not differ from the 
one of imipenem and meropenem, respectively.

Clinical efficacy of cefiderocol and new BL/BLI 
combinations in DTR‑GNB infections
Data from randomized controlled trials
Most of randomized controlled trials (RCT) evaluating 
the clinical efficacy and safety of cefiderocol and novel 

Table 3 EUCAST MIC cut‑off values defining susceptibility to new β‑lactam/β‑lactamase inhibitor combinations and cefiderocol for 
Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia 

Source: www. eucast. org/ clini cal_ break points

EUCAST: European Committee on Antimicrobial Susceptibility Testing; MIC: minimal inhibitory concentration; IR: intrinsic resistance; NA: non-appropriate (species 
with intrinsically weak susceptibility to the considered drug or insufficient data to define a MIC cut-off value)
a MIC cut-off for meropenem

Ceftolozane–
tazobactam

Ceftazidime–
avibactam

Imipenem–
relebactam

Meropenem–
vaborbactam

Cefiderocol

Enterobacterales  ≤ 2 mg/L  ≤ 8 mg/L  ≤ 2 mg/L  ≤ 8 mg/L  ≤ 2 mg/L

Pseudomonas aeruginosa  ≤ 4 mg/L  ≤ 8 mg/L  ≤ 2 mg/L  ≤ 8 mg/L  ≤ 2 mg/L

Acinetobacter baumannii IR NA  ≤ 2 mg/L  ≤ 2 mg/L a NA

Stenotrophomonas maltophilia IR NA IR IR NA

http://www.eucast.org/clinical_breakpoints
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BL/BLI combinations were not focused on DTR-GNB 
infections and used a carbapenem as comparator [81–
86]. Only three RCTs addressed the input of these new 
agents in the specific context of DTR-GNB infections.

In the TANGO II trial [87], 47 patients with docu-
mented CPE infection (mostly KPC-producing K. 
pneumoniae) were treated for 7 to 14 days by either mero-
penem–vaborbactam or best available therapy (BAT), 
most often including an aminoglycoside and/or a poly-
myxin according to susceptibility test results. Rates of 
clinical success were 66% and 33% (difference, 32%; 95% 
confidence interval [CI], 3% to 61%) at end of therapy and 
59% and 27% (difference, 33%; 95% CI, 5% to 61%) at test-
of-cure (ToC) visit for meropenem–vaborbactam and 
BAT, respectively. Day-28 all-cause mortality rates were 
16% and 33% (difference, 18%; 95% CI − 45% to 9%). A 
composite endpoint of clinical failure and nephrotoxicity 
occurred less frequently with meropenem–vaborbactam 
when compared to the BAT arm (31% versus 80%; 95% CI 
for difference, − 75% to − 23%). In this trial, the efficacy 
of meropenem–vaborbactam was not evaluated accord-
ing to the baseline MIC of this combination for the caus-
ative pathogen. Only one patient in the BAT arm received 
ceftazidime–avibactam (single-drug regimen), excluding 
any comparison between the two BL/BLI combinations.

In the RESTORE-IMI 1 trial [88], 47 patients infected 
with DTR-GNB (mostly DTR P. aeruginosa suscepti-
ble to both imipenem–relebactam and colistin) were 
treated with imipenem–relebactam or an imipenem/
colistin combination. The overall rates of clinical suc-
cess at Day 28 were 71% and 40% in patients receiving 
imipenem–relebactam and controls, respectively (differ-
ence, 26%; 95% CI 1% to 51%) while those of Day-28 all-
cause fatality were 10% and 30% (difference, − 17%; 95% 
CI − 46% to 7%). Drug-related adverse events—especially 
nephrotoxicity—were considerably more common in the 
imipenem/colistin arm. Of note, MICs of imipenem–rel-
ebactam ranged from 0.5 to 4 mg/L for P. aeruginosa iso-
lates; however, whether this baseline MIC impacted the 
clinical response to the drug was not investigated.

In the CREDIBLE-CR trial [89], 152 patients with a 
documented DTR-GNB infection (A. baumannii, 46%; K. 
pneumoniae, 33%; P. aeruginosa, 19%;  MIC90 of cefidero-
col, 1, 4 and 2 mg/L, respectively) received either cefider-
ocol (single-drug therapy, 85%) or BAT (colistin-based, 
67%; combination therapy, 45%) for 5 to 21 days. Overall 
rates of clinical success at ToC visit were similar in the 
two arms (53% versus 50%), including in patients with 
hospital-acquired pneumonia. Rates of microbiological 
eradication (31% versus 24%) and of relapse (3% versus 
11%) were, respectively, higher and lower in the cefi-
derocol arm. However, the rate of all-cause fatality was 
numerically higher in the cefiderocol arm at Day 14 (19% 

versus 12%), Day 28 (25% versus 18%) and at follow-up 
termination (34% versus 18%). This finding, which could 
not be linked to any of baseline patient characteristics, 
was mostly attributable to an excess mortality in patients 
infected with A. baumannii (fatality rate, 49% versus 18% 
in the cefiderocol and BAT arms, respectively)—no dif-
ference was observed between the two arms for patients 
infected with P. aeruginosa or K. pneumoniae, except 
in those with A. baumannii co-infection. The baseline 
MIC value did not correlate with the likelihood of clini-
cal or microbiological failure, which was observed even 
for isolates with MIC < 0.5  mg/L. Hetero-resistance has 
been evocated as an underlying mechanism for such 
observations, notably for A. baumannii [90]; nonetheless, 
whether this phenomenon correlates with the hazard 
of treatment failure is debated and necessitates further 
investigations. Following the publication of this trial, the 
Food and Drug Administration issued a warning state-
ment that advocated for restricting the use of cefiderocol 
to patients in whom no other therapeutic option is avail-
able [91].

Data from observational and post hoc studies
Regarding CPE, several cohort studies reported clinical 
success rates above 65–70% with ceftazidime–avibactam 
for severe infections due to KPC- or OXA-48-like-pro-
ducing Enterobacterales [92–101] and with meropenem–
vaborbactam for severe infections due to KPC-producing 
Enterobacterales [102–105]. An ancillary study from the 
CREDIBLE-CR and ASPEK-NP RCT evaluated cefidero-
col versus BAT for infections due to MBL-producing 
Enterobacterales and reported numerically higher rate of 
clinical success and lower rate of mortality with cefider-
ocol [106]. Another ancillary study from the same trials 
and including 10 patients infected with OXA-48-like-
producing Enterobacterales reported clinical cure in 7 
of them [107]. The clinical efficacy of cefiderocol in CPE 
infections has also been reported in numerous case-
reports and small observational studies [108]. Relevant 
clinical success rates—similar to those observed with 
cefiderocol—have equally been observed with the com-
bination of ceftazidime–avibactam and aztreonam for 
infections due to MBL-producing Enterobacterales [109–
111]. No clinical study focused on the efficacy of imipe-
nem–relebactam for infections due to KPC-producing 
Enterobacterales has been published so far.

To our knowledge, the efficacy of novel BL/BLI com-
binations in CPE infections has been directly compared 
in only one study. This work focused on infections due 
to KPC-producing Enterobacterales (72% of cases) and 
including roughly half of critically ill patients, ceftazi-
dime–avibactam (n = 105) and meropenem–vaborbac-
tam (n = 26) showed similar results in terms of clinical 



Page 7 of 20Barbier et al. Annals of Intensive Care           (2023) 13:65  

and microbiological successes, length of hospital stay, 
incidence of adverse events, and mortality [112].

Most of cohort studies centered on patients infected 
with non-MBL-producing DTR P. aeruginosa reported 
clinical success rates above 60% with ceftolozane–tazo-
bactam [92, 113–117] and ceftazidime–avibactam [101, 
118–123]. Observational data on the clinical efficacy 
of imipenem–relebactam are lacking for this patient 
population.

Lastly, a single-center study with propensity-score 
analyses using inverse probability of treatment weighting 
reported a lower mortality rate with cefiderocol versus 
colistin-based regimen in patients with DTR A. bauman-
nii infection (except for those with ventilator-associated 
pneumonia), contrasting with the results of the CREDI-
BLE-CR trial [124]. In this work, microbiological failure 
was twice more frequent in the cefiderocol arm. Nephro-
toxicity was more common in the colistin arm [124].

The cohort studies cited above were mostly retrospec-
tive and not devoted to critically ill patients. To date, 
real-life data on the efficacy of these new β-lactams in 
patients with life-threatening DTR-GNB infection (e.g., 
septic shock) are dramatically scarce.

Combination therapy—what clinical evidence?
Enhanced bacterial killing and a reduced risk of resist-
ance emergence are usual arguments for the use of anti-
microbial combinations in critically ill patients with GNB 
infection. Nevertheless, combining antibiotics may also 
raises concerns related to safety issues including toxicity, 
drug–drug interactions, and potential ecological impact. 
Hence, despite decades of extensive research in the field, 
the benefit-to-risk ratio of combination therapy in this 
population is still debated, with fragmentary evidence for 
improved survival only in the most severe presentations 
[125].

Two meta-analyses of observational studies and RCT 
found no survival benefit with ceftazidime–avibactam 
combined with one or more antimicrobials (i.e., fosfo-
mycin, tigecycline, gentamicin, or meropenem) when 
compared to ceftazidime–avibactam alone for the treat-
ment of DTR-GNB infections [126, 127]. Two large ret-
rospective multicentre cohort studies including patients 
with infections due to KPC-producing K. pneumoniae 
and published after the above-mentioned meta-analyses 
yielded similar results [128, 129]; of note, one of them 
reported a trend toward improved survival with combi-
nation therapy in the subgroup of patients with hospital-
acquired pneumonia [128]. Clinical evidence related to 
the potential benefit of combining ceftazidime–avibac-
tam with colistin is limited to case-reports or small case-
series, precluding any conclusion to be drawn [95, 130].

A meta-analysis of observational studies demonstrated 
a significant reduction in all-cause mortality when com-
bining ceftolozane–tazobactam with other antimicrobials 
in patients with GNB infections—mostly DTR P. aerugi-
nosa infections—yet without benefit in terms of clinical 
cure and microbiological eradication [131]. A subsequent 
multicentre study focused on DTR P. aeruginosa infec-
tions in critically ill patients did not confirm this survival 
benefit [117].

A multi-center retrospective study including 37 
patients with severe KPC-producing K. pneumoniae 
infection reported a higher mortality rate with merope-
nem–vaborbactam combined with another antimicrobial 
(mostly colistin or fosfomycin) when compared to mero-
penem–vaborbactam alone; however, patients receiving 
combination therapy were older, had more comorbidi-
ties and presented with higher severity indexes, thereby 
inducing obvious bias in the interpretation of this result 
[102].

In a post hoc analysis of the CREDIBLE-CR trial, the 
proportions of patients with clinical cure and micro-
biological eradication at ToC visit did not differ between 
patients receiving cefiderocol as single-drug regimen or 
in combination; however, only 14 patients received com-
bination therapy [89]. A single-center retrospective study 
including 16 patients with DTR A. baumannii infection 
showed similar results [132].

To our knowledge, no published data exist to appraise 
the potential benefit of combining imipenem–relebactam 
with other antimicrobials for DTR-GNB infections, espe-
cially those involving P. aeruginosa.

Overall, it remains unclear whether cefiderocol and 
novel BL/BLI combinations should be associated with 
antimicrobial agents from other classes to improve 
patient-centered outcomes in severe DTR-GNB infec-
tions, with most of available clinical data coming from 
retrospective cohort studies. Pending further evidence, 
combination therapies could be considered in certain 
situations at high risk for clinical or microbiological fail-
ure such as unachievable source control, high bacterial 
inoculum, or infections due to extensively drug-resistant 
strains with elevated MICs, as suggested in certain stud-
ies evaluating older antimicrobials in DTR-GNB infec-
tions [133, 134].

Clinical pharmacokinetics and optimization 
of dosing schemes
New drugs, old PK/PD concepts
The most efficient pharmacokinetic/pharmacodynamic 
(PK/PD) index to predict bacterial cell killing with 
β-lactams is the percentage of the dosing interval dur-
ing which the concentration of unbound drug exceeds 
the MIC of the strain (%fT > MIC). A reasonable amount 
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of evidence corroborates that fT ≥ MIC equal to 100% 
(i.e., minimal inter-dose concentration  [Cmin]/MIC ≥ 1) 
and even fT ≥ 5xMIC equal to 100% (i.e.,  Cmin/MIC ≥ 5) 
should be targeted in patients receiving β-lactams for 
severe infections [135–140], higher  Cmin/MIC ratio being 
linked with enhanced bacterial killing and reduced emer-
gence of resistant mutants [135, 141–143]. Higher blood 
levels also correlate with improved tissue penetration and 
bioavailability of the drug at the infection site. As sup-
ported by Monte Carlo simulations [144, 145], extending 
the duration of β-lactam infusion increases drug expo-
sure and allows higher  Cmin targets to be reached, which 
could translate into improved patient outcome during 
severe infections [146, 147]. Available data suggest that 

these concepts apply for new β-lactams and plead for 
the routine use of 3-h infusion scheme for cefiderocol 
and meropenem–vaborbactam, and 4- to 6-h infusion 
scheme for ceftolozane–tazobactam and ceftazidime–
avibactam (Fig.  1) [128, 144, 148–151]. The stability of 
the drug in syringes at room temperature must be con-
sidered when using extended or continuous infusion. 
Recent studies reported a stability of 4 to 8 h for mero-
penem (in dextrose 5% and normal saline, respectively), 
12 h for vaborbactam, and 24 h for ceftazidime–avibac-
tam, ceftolozane–tazobactam, cefiderocol and aztreonam 
(either in dextrose 5% or normal saline) [152, 153].

Fig. 1 Administration scheme and dosing adjustments of new β‑lactam/β‑lactamase inhibitor combinations and cefiderocol in critically ill patients. 
See the text and Table 4 for references. CFL: cefiderocol; CFL: cefiderocol; C‑TZ: ceftolozane–tazobactam; CAZ‑AVI: ceftazidime–avibactam; MER‑VAB: 
meropenem–vaborbactam; IMI‑REL: imipenem–relebactam; CrCl: creatinine clearance; MIC: minimal inhibitory concentration; AKI: acute kidney 
injury; TDM: therapeutic drug monitoring; IHD: intermittent haemodialysis; CRRT: continuous renal replacement therapy; LD: loading dose
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Dosing adjustment in particular situations
New BL/BLI combinations and cefiderocol share simi-
lar characteristics with older β-lactams, including high 
therapeutic indexes, heterogeneous inoculum effect, 
hydrophilicity, small molecular weights, almost exclusive 
renal clearance, low protein-binding (except for cefidero-
col) implying effective elimination by renal replacement 
therapy (RRT), and variable tissue diffusion (Table 4) [53, 
154]. Dosing adjustment may be required in specific clin-
ical situations to ensure sufficient antibiotic concentra-
tion at the infectious site while avoiding toxic levels to be 
attained [155, 156].

First, augmented renal clearance (ARC), consensually 
defined as a creatinine clearance ≥ 130  mL/min/1.73m2, 
may reduce  Cmin and overall drug exposure, thereby low-
ering the probability of PK/PD target attainment, espe-
cially for bacterial isolates with high MIC values. For 
instance, through continuous infusion of ceftolozane–
tazobactam has been shown to ease PK/PD target attain-
ment in most cases, 4-h extended infusion may be more 
effective for MIC values ≥ 4  mg/L combined with ARC 
[144]. Higher-dose regimen appear also needed in this 
situation (Fig.  1) [149, 151, 157]. Of note, cefiderocol is 
the only new β-lactam for which high-dose schemes were 
used in patients with ARC in pivotal randomized stud-
ies—further data are needed for new BL/BLI combina-
tions in this population.

Next, while renal dysfunction exposes to β-lactam 
over-dosing, therapeutic failures have also been reported 
in this context, raising the question of inadequate PK/
PD target attainment [158]. For novel agents as for 
older β-lactams, recommendations for dose adjustment 
in case of renal dysfunction are mostly based on data 
from patients with chronic kidney disease. Because of 
increased volume of distribution in critically ill patients, 
possible resolution of acute renal dysfunction within the 
first following days [155, 159], high therapeutic index and 
a limited risk of neurotoxicity with short exposure to high 
doses, a loading dose is recommended regardless of ClCr 
and dose adjustment should be applied only after the first 
24 to 48  h of therapy [150, 154, 160, 161]. Evidence for 
dosing adjustment of cefiderocol and new BI/BLI combi-
nation in critically ill patients receiving RRT is currently 
scarce; however, data related to older β-lactams suggest 
that dosing scheme should be adapted to the overall 
effluent flow rate during continuous RRT while system-
atic reinjection at the end of the session may ensure the 
achievement of PK/PD objectives during intermittent 
hemodialysis [162–165].

Of note, hepatic dysfunction does not induce any clini-
cally relevant variation in β-lactam PK; therefore, no dos-
ing adjustment is required in patients with liver failure.

Data are also lacking to appraise the pharmacokinetic 
impact of obesity for the new drugs addressed here. Gen-
erally, the hydrophilic feature of β-lactams explains the 
weak variation of their volume of distribution in case 
of overweight [166, 167]. Whether using adjusted body 
weight may be beneficial in obese patients remains to 
be confirmed [166]. Higher dosing could be discussed in 
cases of morbid obesity and high MIC values [168].

Case-reports and small case-series suggest that extra-
corporeal membrane oxygenation (ECMO) exerts no 
major effect on the pharmacokinetics of ceftolozane–
tazobactam and cefiderocol, with standard dosing ena-
bling the attainment of usual targets [169–172]. No 
clinical information is available for other new β-lactams 
in patients under ECMO.

Through this approach does not appear justified in all 
critically ill patients [173, 174], therapeutic drug moni-
toring combined with MIC measurement (to avoid undue 
dose escalation) could be proposed in those at marked 
risk for PK/PD impairments (e.g., causative pathogen 
with high MIC value, ARC, RRT, or low tissue penetra-
tion rate). Close collaboration between microbiologist, 
pharmacist, infectious disease specialist and intensivist is 
warranted in these situations.

Safety issues
Non-ecological adverse events
No apparent over-risk of drug-related adverse events was 
noticed with cefiderocol or new BL/BLI combinations in 
RCTs comparing these agents with meropenem, imipe-
nem plus colistin, or BAT [81, 83, 86–89]. Importantly, 
the hazard of acute kidney injury was higher with BAT 
in nearly all studies using this regimen as comparator, a 
finding mostly attributable to colistin-induced nephro-
toxicity [87–89, 124]. Encephalopathy may conceivably 
occur with these drugs as with older β-lactams though 
it remains to be explored [175, 176]. A recent large-scale 
pharmacovigilance analysis suggested an over-reporting 
of agranulocytosis/pancytopenia and acute pancreatitis 
with ceftolozane–tazobactam and ceftazidime–avibac-
tam, respectively—these observations require confirma-
tion in clinical cohorts [175].

Impact on the intestinal microbiota
Evidence related to the impact of ceftazidime–avibactam 
on the gut microbiota is limited to a single study includ-
ing 12 healthy volunteers receiving standard dosing (2 
gr/0.5 gr q8h) for 7 days [177]. This work, based on con-
ventional cultures and not on modern metagenomics 
approaches, showed a transient decrease in Enterobacte-
rales counts, an increase in the count of Enterococcus spp 
(without return to baseline 14 days after treatment com-
pletion in most of volunteers), a sustained drop in the 
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counts of cultivable resident anaerobes and, strikingly, 
the acquisition of a toxinogenic strain of Clostridioides 
difficile in 5 subjects [177]. This apparent link between 
ceftazidime–avibactam exposure and C. difficile acquisi-
tion was not confirmed in clinical studies—indeed, in a 
multicentre cohort including 203 patients receiving cef-
tazidime–avibactam, only 3 cases (1.5%) of C. difficile 
infection were documented [123]. To date, no data exist 
regarding the impact of ceftolozane–tazobactam, imipe-
nem–relebactam, meropenem–vaborbactam or cefidero-
col on the gut microbiota. Clinical studies addressing this 
issue appear extremely complex to set up since almost all 
patients requiring these drugs present with multiple risk 
factors for intestinal dysbiosis, including critical illness 
and prior exposure to other broad-spectrum antimicro-
bials [178].

Emergence of resistance under therapy
Treatment-emergent resistance to ceftazidime–avibac-
tam in KPC-producing Enterobacterales mostly results 
from mutations of the blaKPC-2 or blaKPC-3 genes and 
may be involved in up to 30% of clinical failure or relapse 
following exposure to this drug [179–184]. Acquired 
resistance to meropenem–vaborbactam and imipenem–
relebactam in CPE appears mostly driven by imperme-
ability ensuing from mutation-induced porin loss—this 
phenomenon appears rare in patients treated with mero-
penem–vaborbactam (< 5%) while its incidence has not 
been precisely described in those receiving imipenem–
relebactam [105, 112, 179]. In P. aeruginosa, the emer-
gence of resistance to ceftolozane–tazobactam rests on 
mutation-induced over-expression of the chromosomal 
blaAmpC gene: this mechanism might be involved in up 
to 50% of patients with microbiological failure at end of 
therapy, especially in case of intermittent infusion (when 
compared to extended infusion) and defective source 
control [185]. However, in a post hoc analysis of the 
ASPECT-NP RCT including 59 patients receiving cef-
tolozane–tazobactam for nosocomial pneumonia due to 
P. aeruginosa, only 3 (5%) acquired a ceftolozane–tazo-
bactam-resistant isolate under therapy, all with a new 
strain (no resistant mutant selection) [186]. Treatment-
emergent resistance to imipenem–relebactam in patients 
infected with CR P. aeruginosa has been recently linked 
with mutations in the MexAB-OprM and/or MexEF-
OprN efflux operons [187]—the clinical frequency of this 
phenomenon is unknown. Lastly, in the CREDIBLE-CR 
trial, a fourfold or higher increase in baseline cefidero-
col MIC values of causative pathogens was observed in 
15% of microbiologically evaluable patients receiving this 
agent—this increase led to values exceeding the EUCAST 
susceptibility threshold in one third of cases [89].

Empirical use of cefiderocol and new BL/BLI 
combinations in critically ill patients
Pending dedicated studies on this issue, several key 
aspects of antimicrobial stewardship should be taken 
in account when considering the potential utilization of 
cefiderocol and new BL/BLI combinations for empirical 
therapy in patients with suspected DTR-GNB infection. 
First, the choice of empirical antimicrobials must be a 
“winning bet” in case of severe infection. Indeed, while 
delayed appropriate therapy is strongly associated with 
impaired outcomes in patients with septic shock [188, 
189], unnecessary exposure to broad-spectrum antimi-
crobials may lead to deleterious ecological side-effects 
(namely, alteration of the host microbiota, acquisition 
of multidrug-resistant bacteria, and Clostridioides dif-
ficile infection) and toxic adverse events [190, 191]. 
Conversely, evidence exists that a restrictive strategy 
for empirical initiation of broad-spectrum antimicrobi-
als in hemodynamically stable patients with suspected 
ICU-acquired infection has no negative impact on hos-
pital mortality [192]. Second, the emergence of bacterial 
resistance under therapy has been described for virtually 
all antimicrobial agents, including cefiderocol and novel 
BL/BLI combinations [89, 112, 179, 193, 194]. Hence, a 
liberal utilization of these new drugs might compromise 
their activity on CR-GNB. Third, not all ICU patients 
are at-risk for infection due to DTR-GNB. Identify-
ing such patients is a challenge that can be approached 
using known risk factors such as recent exposure to car-
bapenems and other broad-spectrum agents, invasive 
healthcare procedures, and, most of all, local epidemi-
ology—that is, endemicity or on-going outbreaks, espe-
cially in case of defective infection prevention measures. 
The colonization status is also pivotal since carriage is a 
prerequisite for subsequent infection; however, through 
negative sequential surveillance cultures have a high 
negative predictive value, less than 50% of critically ill 
individuals colonized with carbapenem-resistant GNB 
will experience a healthcare-associated infection due 
to these pathogens during their ICU stay [195–197]. In 
addition, full antimicrobial susceptibility test results—or, 
at least, information on the determinants of carbapenem 
resistance—should be available for clinicians to assist the 
choice of the most appropriate drug since these agents 
are not identical with respect to their spectrum of activ-
ity and mechanisms of action (Table  1). Multiplex PCR 
assays enabling species and carbapenemase identification 
directly from clinical samples in short turn-around time 
could be useful, but their input warrants further investi-
gation [198]. Of note, these tools are ineffective to detect 
carbapenem resistance resulting from chromosomal 
mutations—e.g., in P. aeruginosa [199].
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Published evidence on the empirical use of new 
β-lactams in critically ill patients is currently lack-
ing. These agents might be administered empirically in 
patients at high-risk for DTR-GNB (that is, known car-
riage or local endemicity with high colonization pressure) 
and presenting with life-threatening healthcare-asso-
ciated infection (e.g., septic shock). Every probabilistic 
prescription should be reevaluated early to avoid unnec-
essary exposure to these drugs, with prompt de-escala-
tion to a narrower-spectrum regimen whenever possible.

Should ceftolozane–tazobactam and ceftazidime–
avibactam be prescribed as carbapenem‑sparing 
agents in patients infected with ESBL‑ 
or AmpC‑produding Enterobacterales?
Published RCT have demonstrated the non-inferiority of 
ceftolozane–tazobactam versus meropenem in terms of 
clinical cure in patients with complicated intra-abdom-
inal infections (in combination with metronidazole) or 
nosocomial pneumonia [82, 83]. In this latest trial, cef-
tolozane–tazobactam was non-inferior to meropenem in 
patients with pneumonia due to ESBLE or ceftazidime-
resistant P. aeruginosa, for clinical cure as for Day-28 
all-cause mortality [83]. Moreover, a multi-center study 
including 153 patients with severe ESBLE infections 
reported an 84%-overall success rate with ceftolozane–
tazobactam [200]. Yet, important considerations argue 
against the use of ceftolozane–tazobactam as a carbap-
enem-sparing option in patients with ESBLE infections, 
including the willingness to preserve its efficacy on DTR 
P. aeruginosa [193], the hazard of co-selection of cef-
tazidime–avibactam resistance in P. aeruginosa isolates 
with treatment-emergent resistance to ceftolozane–tazo-
bactam [201], and the lack of data regarding a potential 
benefit of ceftolozane–tazobactam versus carbapenems 
regarding antimicrobial-induced intestinal dysbiosis. 
Likewise, the results of several RCT [81, 202–207] and 
a meta-analysis [208] support the non-inferiority of cef-
tazidime–avibactam versus carbapenems on mortality 
and/or clinical cure endpoints in complicated urinary 
tract infections, complicated intra-abdominal infections 
(in combination with metronidazole) and nosocomial 
pneumonia, even when focusing on ESBL- or AmpC-
producing Enterobacterales [209]. Nevertheless, simi-
lar arguments than for ceftolozane–tazobactam argue 
against the liberal use of ceftazidime–avibactam in these 
common indications, notably the risk of reduced activ-
ity on KPC-producing Enterobacterales resulting from 
mutant selection [182, 210] or the lack of real-world data 
demonstrating a more limited impact on commensal 
microbiotas when compared to carbapenems. As oth-
ers [1], we believe that the use of these BL/BLI combina-
tions should be restricted to clinical situations in whom 

no first-line safe options are available—that is, infections 
due to DTR P. aeruginosa plus, for ceftazidime–avibac-
tam only, those due to KPC- or OXA-48-producing 
Enterobacterales.

Summary of evidence and research agenda
New BL/BLI combinations and cefiderocol repre-
sent long-awaited options for improving the man-
agement of DTR-GNB infections. These drugs have 
demonstrated relevant clinical success rates and a 
reduced renal risk in most of situations for whom poly-
myxin- and/or aminoglycoside-based regimen were 
historically used as last-resort strategies—that is, cef-
tazidime–avibactam for infections due to KPC- or 
OXA-48-like-producing Enterobacterales, merope-
nem–vaborbactam for KPC-producing Enterobacte-
rales, ceftazidime–avibactam/aztreonam combination 
or cefiderocol for MBL-producing Enterobacterales, and 
ceftolozane–tazobactam, ceftazidime–avibactam and 
imipenem–relebactam for non-MBL-producing DTR P. 
aeruginosa. To preserve their efficacy, these drugs should 
not be used to treat infections due to multidrug-resistant 
but carbapenem-susceptible GNB (e.g., ESBL-producing 
Enterobacterales).

Notwithstanding these promising results, limited evi-
dence exists on the use of new β-lactams in critically ill 
patients with DTR-GNB infection. Several important 
knowledge gaps warrant urgent investigation in this pop-
ulation, including PK/PD information in particular situ-
ations (e.g., pneumonia or other deep-seated infections, 
RRT and ARC), the benefit of combination therapy for 
the most severe presentations or DTR-GNB with high 
MIC values for these new agents, the input of TDM, a 
precise appraisal of the hazard of treatment-emergent 
resistance and possible preventive measures, safety anal-
yses (especially for high-dose regimen), the potential use-
fulness of multiplex PCR assay and other rapid diagnostic 
tools to rationalize their empirical utilization in ICUs 
facing endemicity or on-going outbreaks, and optimal 
treatment durations. Comparative clinical, ecological and 
medico-economic data are equally needed for situations 
in whom two or more of these agents exhibit in  vitro 
activity against the causative pathogen. Further studies 
addressing the aforementioned issues will help better 
defining the positioning and appropriate administration 
scheme of these new β-lactams in critically ill patients.
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