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Abstract 

Background The respective benefits of high and low doses of dexamethasone (DXM) in patients with severe acute 
respiratory syndrome coronavirus 2 (SARS‑Cov2) and acute respiratory failure (ARF) are controversial, with two large 
triple‑blind RCTs reaching very important difference in the effect‑size. In the COVIDICUS trial, no evidence of addi‑
tional benefit of high‑dose dexamethasone (DXM20) was found. We aimed to explore whether some specific patient 
phenotypes could benefit from DXM20 compared to the standard of care 6 mg dose of DXM (DXMSoC).

Methods We performed a post hoc exploratory Bayesian analysis of 473 patients who received either DXMSoc 
or DXM20 in the COVIDICUS trial. The outcome was the 60 day mortality rate of DXM20 over DXMSoC, with treatment 
effect measured on the hazard ratio (HR) estimated from Cox model. Bayesian analyses allowed to compute the pos‑
terior probability of a more than trivial benefit (HR < 0.95), and that of a potential harm (HR > 1.05). Bayesian measures 
of interaction then quantified the probability of interaction (Pr Interact) that the HR of death differed across the sub‑
sets by 20%. Primary analyses used noninformative priors, centred on HR = 1.00. Sensitivity analyses used sceptical 
and enthusiastic priors, based on null (HR = 1.00) or benefit (HR = 0.95) effects.

Results Overall, the posterior probability of a more than trivial benefit and potential harm was 29.0 and 51.1%, 
respectively. There was some evidence of treatment by subset interaction (i) according to age (Pr Interact, 84%), 
with a 86.5% probability of benefit in patients aged below 70 compared to 22% in those aged above 70; (ii) accord‑
ing to the time since symptoms onset (Pr Interact, 99%), with a 99.9% probability of a more than trivial benefit 
when lower than 7 days compared to a < 0.1% probability when delayed by 7 days or more; and (iii) according to use 
of remdesivir (Pr Interact, 91%), with a 90.1% probability of benefit in patients receiving remdesivir compared to 19.1% 
in those who did not.

Conclusions In this exploratory post hoc Bayesian analysis, compared with standard‑of‑care DXM, high‑dose DXM 
may benefit patients aged less than 70 years with severe ARF that occurred less than 7 days after symptoms onset. 
The use of remdesivir may also favour the benefit of DXM20. Further analysis is needed to confirm these findings.
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Trial registration: NCT04344730, date of registration April 14, 2020 (https:// clini caltr ials. gov/ ct2/ show/ NCT04 344730? 
term= NCT04 34473 0& draw= 2& rank=1); EudraCT: 2020‑001457‑43 (https:// www. clini caltr ialsr egist er. eu/ ctr‑ search/ 
search? query= 2020‑ 001457‑ 43).
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Background
In the early phases of the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic, the 
benefit of low/intermediate doses of corticosteroids in 
patients with acute respiratory failure (ARF) was found 
by the RECOVERY trial [1], confirmed by a meta-anal-
ysis of ongoing studies [2]. Since then, dexamethasone 
(DXM) 6  mg has been included as a standard of care 
(SoC) in the management of SARS-CoV-2 ARF with oxy-
gen requirements. However, despite 4 randomized clini-
cal trials (RCTs) [3–6], including 2 triple-blind RCTs [3, 
6], the benefit of high doses of corticosteroids (DXM 
12 mg or more) compared to standard of care low/inter-
mediate doses (DXMSoc) could not be demonstrated [7].

In the COVIDICUS multicentre randomized clinical 
trial [3], a total of 546 patients admitted to the inten-
sive care unit (ICU) with SARS-CoV-2 acute respiratory 
hypoxemic failure (ARHF) were randomized 1:1 to either 
high-dose dexamethasone (DXM20, n = 270) or DXM-
SoC (n = 276) (NCT04344730). Such a strategy failed to 
have any impact on 60  day mortality (DXM20, 25.9%, 
vs. DXMSoC, 26.8%) [3]. However, the absence of any 
treatment effect, on the whole, may represent a benefit 
in some patients and harm in others due to differential 
treatment effects on subpopulations [8]. This was recently 
pointed out in the critical care setting, possibly related to 
the inclusion in trials of too heterogeneous populations 
[9]. Thus, exploring the treatment effect across different 
subgroups within an overall nonsignificant trial could be 
of interest [10].

Evaluation of the heterogeneity of the treatment effect 
is an essential aspect of personalized medicine and 
patient-centred outcome research. Factors that allow 
us to identify individuals who are more likely than oth-
ers to experience a favourable or unfavourable effect of 
treatment define “predictive” factors, different from 
“prognostic” factors, defined as those used to identify the 
likelihood of a clinical event such as progression or death 
in patients. In patients with severe COVID-19 admitted 
to the ICU, several subsets of interest have been reported 
in the literature suggesting a prognostic [11–15] or pre-
dictive impact of those subsets [1, 5, 16–19].

However, to determine whether a factor is potentially 
predictive, a formal assessment of an interaction between 
the factor and treatment group needs to be performed 
[20]. Indeed, as with overall clinical trial results, chance 
findings are possible when assessing subgroup results. 
To assess the existence of interactions, the traditional 
approach evaluates the data in each of the subgroups 
independently and then uses several statistical tests for 
interaction, such as that of Gail and Simon [21]. However, 
clinical trials are rarely powered to detect statistically 
significant interactions. Bayesian approaches [22] have 
been reported as a novel solution to identify subgroups 
towards the “personalized medicine” [23]. Rather than 
postulating hypotheses regarding the quantity of inter-
est, their main advantage is transparently communicat-
ing information by giving direct probabilistic statements 
[24]. In the setting of multi-population trials, Millen 
et al. [25] have proposed Bayesian interaction measures, 
referring to a potential concern that the inferences in the 
overall population may be unduly influenced by the treat-
ment effect in a subgroup of patients.

In this study, based on the COVIDICUS trial, we used a 
Bayesian framework to assess the predictive value of sev-
eral subsets of interest on the benefit of high-dose DXM 
in SARS-CoV-2 ARHF patients admitted to ICUs.

Methods
The covidicus trial
Study participation in the COVIDICUS trial 
(NCT04344730), sponsored by Assistance Publique-
Hôpitaux de Paris (Paris, France), was proposed to all 
consecutive COVID-19 adult patients admitted to par-
ticipating French ICUs who met the eligibility criteria. 
Eligible patients were adults aged ≥ 18  years admitted 
to the ICU within the last 48 h for confirmed or highly 
suspected COVID-19 infection and with signs of AHRF 
(PaO2 < 70  mmHg or transcutaneous oxygen satura-
tion (SpO2) < 90% on room air, tachypnea > 30/min, 
laboured breathing, respiratory distress, or need for oxy-
gen flow ≥ 6 L/min) and who could receive any available 
treatment intended to treat SARS-CoV-2 infection.

https://clinicaltrials.gov/ct2/show/NCT04344730?term=NCT04344730&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT04344730?term=NCT04344730&draw=2&rank=1
https://www.clinicaltrialsregister.eu/ctr-search/search?query=2020-001457-43
https://www.clinicaltrialsregister.eu/ctr-search/search?query=2020-001457-43
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It aimed to compare the benefit of high-dose dexameth-
asone (DXM20, 20 mg/d for 5 days, then 10 mg/d × 5 days) 
compared to the standard of care (DXMSoC), first based 
on placebo. On July 3, 2020, after the publication of the 
recovery trial [1], the COVIDICUS Scientific Committee 
prompted the study group to amend the study protocol 
to allow investigators to administer DXM up to 6  mg/d 
for 10  days to DXMSoC patients. It also addressed the 
question of oxygen support technique, further comparing 
continuous positive airway pressure (CPAP) or high-flow 
oxygen therapy (HFNO) vs. standard oxygen support in 
non-intubated patients; however, we only focused on the 
effect of dexamethasone in this study.

Inclusions ranged from April 2020 to January 2021 in 
19 French ICUs. The primary outcome was the time-
to-all causes of death at Day 60 in the intent-to-treat 
population.

The trial was conducted in accordance with the Decla-
ration of Helsinki. Signed informed consent was obtained 
from all included patients. An emergency consent pro-
cedure with the patient’s legal guardian or relatives was 
implemented for patients unable to consent.

Patients
Of the 546 randomized patients, 73 were included before 
September 17, 2020, when the protocol was amended 
to switch the placebo control group to a low dose of 
dexamethasone. We included all 473 patients from the 
modified intention-to-treat (ITT) population who were 
enrolled thereafter and randomly allocated to either 
DXM high dose (DXM20, n = 234) or low dose (DXM-
SoC, n = 239).

Subsets of interest
We first considered four partitions of patients based 
on (i) age (< , > 70  years), (ii) inflammatory status, 
defined at admission by either ferritin > 1000  μg/L or 
CRP > 100  mg/L, as previously reported [26]; (iii) time 
elapsed since the onset of COVID19 symptoms at admis-
sion, using 7  days as the threshold [1, 16, 27]; and (iv) 
fever (body temperature < 38  °C vs. ≥ 38  °C). Then, we 
also considered the effect according to values of CRP, fer-
ritin and Ddimers, using the median value in the whole 
sample as the cut-off value (i.e., 135, 1120 and 940, 
respectively); for ferritin, we also considered the reported 
cut-off of 3150.29 μg/L, as used in [28]. We also consid-
ered the severity of the disease, as measured by the need 
of invasive mechanical ventilation (IMV) at study entry, 
or according to the median value of the SAPS2. Finally, 
we also tested the impact of the concomitant use of 
remdesivir.

Statistical analysis
The treatment effect was defined as the hazard ratio 
(HR) of 60 day mortality in randomized groups DXM20 
(high dose) vs. DXMSoC (low/moderate dose). We 
used the following Cox proportional hazards model 
�(t) = �0(t)exp(αt + βx + γ tx) , where �0(t) represents 
the baseline hazard function, x denotes a binary covari-
ate, β the regression coefficient corresponding to the 
covariate, t is a binary treatment indicator, α represents 
the treatment effect for patients with x = 0 , and γ is the 
regression coefficient corresponding to the treatment-
by-covariate interaction; treatment effect for patients 
with x = 1 is thus given by α + β + γ . The estimation 
of the regression coefficients in the Cox model was per-
formed in a Bayesian framework, with baseline hazard 
function defined as a mixture of piecewise constant 
functions [29]. We considered a total number of knots 
K = 3 and an equally spaced partition of the time axis 
from 0 to 60 which corresponds to the longest sur-
vival time observed. The posterior distribution of each 
parameter was obtained, with the derived posterior 
density of any linear combination of the parameters, 
quantifying the uncertainty of treatment effect in each 
subset [30]. As proposed by Harrell in COVID-19 trials 
[31], a more than trivial benefit or a more than trivial 
harm was measured using the cut-off threshold of 1.05 
on the HR scale. Thus, the posterior probability of a 
more than trivial benefit (HR < 0.95) and a more than 
trivial harm (HR > 1.05) overall and in each subset given 
the available data was computed. Then, according to 
Millen, treatment-by-subset interaction was measured 
on the ratio of treatment effect in the subsets, with the 
computed posterior probability that the HR of death in 
subsets differs by at least 20% [25].

Prior scenario was set under a non-informative 
independent framework with a gaussian N (0, 0.001) 
for each regression coefficient and an independent 
gamma distributions, Ga (0.01, 0.01) for each piece-
wise baseline hazard. Sensitivity analyses used opti-
mistic and sceptical priors, that is centred on a positive 
(HR = 0.95) or null (HR = 1.00) effects, as recommended 
[32]. We also used Bayesian beta-binomial models, with 
the prevalence of death within the first 60 days follow-
ing randomisation as the parameter of interest and the 
relative risk (RR) of death as the measure of effect.

We used R (https:// www.R- proje ct. org/) and JAGS 
[33], a user-friendly, open-source, validated software 
suited for the application of Bayesian methods, for 
analysis. We ran each model for 1000 burn-in simu-
lations, then the model was run for 50,000 additional 
simulations to keep one in 10 so that a proper thinning 
is done. Gelman and Rubin’s convergence diagnostic 
[34] was computed. Trace plots of the sampled values 

https://www.R-project.org/
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for each parameter in the chain appear overlapping one 
another and Gelman–Rubin values were very close to 
1, which indicated that convergence has been achieved.

Results
The distribution of the 473 enrolled patients across the 
different strata is reported in Table 1. Most of the time, 
two subsets of imbalanced sizes were distinguished, 
with the lowest subset representing 11–29% of the 
sample.

In the whole modified ITT population, there was no 
evidence of any effect overall, as illustrated by the Bayes-
ian posterior median HR of 60  day mortality estimated 
at 0.947 (95% credibility interval, 0.66–1.37), close to the 
frequentist estimate of 0.947 (95% confidence interval, 
0.66–1.36) illustrating the non-informative priors (Fig. 1). 
Sensitivity analyses based on sceptical or enthusiastic 
prior only very slightly modified these findings (Fig. 1C). 
The posterior probability of a more than trivial benefit 
(HR < 0.95) and a more than trivial harm (HR > 1.05) in 
the DXM20 group was 0.51 and 0.29, respectively.

Some evidence of a treatment-by-subset interaction, 
that is, heterogeneity of the treatment effect in some 
subsets, was suggested (Fig.  2, Table  2). First of all, this 
concerned the patient’s age: indeed, there was a 99.9% 
probability that the DXM20 benefit differed by at least 
20%, with some evidence of benefit for patients aged 
under 70 years (HR = 0.68, 95% CrI 0.37–1.23, probabil-
ity of benefit 86.5%, probability of harm 7.7%) while on 
the opposite some evidence of deleterious effect in those 
aged above 70 years (HR = 1.15, 95% CrI 0.71–1.83, prob-
ability of benefit 22%, probability of harm 64%) (Fig. 3A). 
Otherwise, high-dose DXM may have benefited patients 
with treatment onset within the first 7 days of infection 
(HR = 0.59, 95% CrI 0.46–0.75) while it was deleterious in 
those who were admitted later (HR = 1.16, 95% CI 1.06–
1.28) (Fig. 3B), or in those with high levels of ferritin, with 
a 99% probability of benefit when ferritin > 1120  μg/L 
compared to 2.3% in those < 1120 μg/L (Fig. 3C, Table 2). 
Close findings were observed, though erased, accord-
ing to CRP, with some evidence of decreased effect of 
DXM20 in patients with CRP > 135 (HR ratio of 1.43, 
95% CrI 0.79–2.59). Similarly, patients with low levels 
of Ddimers appeared to have benefited from DXM20 
(HR = 0.63, 95% CrI 0.34–1.17) compared to those with 
high levels in whom the treatment appeared deleterious 
(HR = 1.52, 95% CrI 0.87–2.72) (HR ratio = 2.41, 95% CrI 
1.38–4.29). Finally, we observed an 91% probability of 
interaction between remdesivir use and DXM20 effect 
on Day 60 mortality, where remdesivir use was associ-
ated with a 90% chance of possible benefit of DXM20 
(HR = 0.61, 95% CrI 0.29–1.18) compared to 19% in 
those who did not receive remdesivir (HR = 1.15, 95% CrI 

Table 1 Characteristics of patients across treatment groups and 
baseline subsets

Baseline subsets at 
randomization

DXMSoC, n = 239
N (%)

DXM20, n = 234
N (%)

Age, years

  < 70 144 (60.2) 135 (57.7)

 ≥ 70 95 (39.8) 99 (42.3)

Time since symptoms onset, days

  < 7 55 (23.1) 52 (22.9)

 ≥ 7 183 (76.9) 175 (77.1)

Body Temperature, °C

  < 38 186 (79.1) 182 (78.1)

 ≥ 38 49 (20.8) 51 (21.9)

Inflammation  syndromea

 No 26 (13.8) 23 (13.2)

 Yes 162 (86.2) 151 (86.8)

 Missing 51 60

 Age < 60 and no inflammation* 3 (1.6) 10 (5.7)

 Age ≥ 60 and inflammation 114 (60.6) 122 (70.1)

 Age < 60 and inflammation 48 (25.5) 29 (16.7)

 Age ≥ 60 and no inflammation 23 (12.2) 13 (7.5)

 Missing 51 60

CRP, mg/L

  < 135 98 (49.7) 98 (50.0)

 ≥ 135 99 (50.3) 98 (50.0)

 Missing 42 38

Ferritin, μg/L

  < 1120 76 (55.5) 61 (44.2)

 ≥ 1120 61 (44.5) 77 (55.8)

 Missing 102 96

Ferritin, μg/L

  < 3150.29 123 (89.8) 121 (87.7)

 ≥ 3150.29 14 (10.2) 17 (12.3)

 Missing 102 96

D‑Dimers, ng/mL

  < 940 89 (46.4) 103 (53.9)

 ≥ 940 103 (53.6) 88 (46.1)

 Missing 47 43

Mode of oxygenation

 O2 face mask 48 (20.1) 46 (19.7)

 HFNO 48 (20.1) 41 (17.5)

 CPAP 47 (19.7) 50 (21.4)

 IMV 96 (40.1) 97 (41.4)

Invasive mechanical ventilation

 No 143 (59.9) 137 (58.6)

 Yes 96 (40.1) 97 (41.4)

SAPS II

  < 33 113 (50.9) 100 (47.6)

 ≥ 33 109 (49.1) 110 (52.4)

Other treatment of SARS‑CoV‑2

 Remdesivir 61 (25.5) 62 (26.5)

 IL6 1 (0.4) 4 (1.7)
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0.75–1.75) (Fig. 3D). By contrast, there was no evidence 
of any treatment-by-subset interaction according to the 
fever (with a 0.58 posterior probability of HR differing by 
20%) or SAPS2 (Probability of interaction of 0.67).

Sensitivity analyses are reported in Additional file. 
Modifying the prior in terms of baseline hazards or 
treatment effect did not affect the results (Additional 

Table 1 (continued)
CRP C reactive protein, O2 oxygen, HFNO High-Flow Nasal Oxygen, CPAP 
Continuous Positive Airway Pressure, IMV invasive mechanical ventilation, IL6 
interleukin 6, SAPS II Simplified Acute Physiology Score 2
a Defined as either ferritin level > 1000 μg/L or CRP > 100 mg/L

Fig. 1 COVIDICUS Trial: Main trial outcome across the DXM randomized groups. Overall survival according to randomization (a) and posterior 
density of the hazard ratio (HR) of the 60‑day mortality rate in the whole trial population based on a noninformative prior (b) or using 
either a sceptical or an enthusiastic prior (c)
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file 1: Table S1). When ignoring time to death by mod-
elling the prevalence rather than the hazard of death 
in the first 60  days, detected interactions were also 
roughly similar. Nevertheless, previous observed heter-
ogeneity in treatment effect across D-dimers or ferritin 
levels were erased using a beta-binomial model, likely 

due to the fact that all survival curves reached close 
60 day estimates (Additional file 1: Fig S2). By contrast, 
three main interactions, with age, time to symptoms 
onset, and remdesivir, were confirmed.

Subset

Age<70

       >70

Symptom < 7days

                > 7 days

Fever No

          Yes

Inflammation No

                     Yes

CRP<135 mg/L

        >135 mg/L

Ferritin<1120 µg/L

           >1120 µg/L

Ddimers<940 µg/L

             >940 µg/L

IMV No

          Yes

SAPS <33

         >33

Remdesivir No

                   Yes

0 0.5 1 1.5 2 2.5 3 3.5
HR (95% credible interval)

Favors DXM20 Favors DXMSoc
Fig. 2 Looking for treatment by subset interactions in terms of hazard ratio (HR) of 60‑day mortality. CRP C reactive protein, MV invasive mechanical 
ventilation, SAPS Simplified Acute Physiology Score
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Discussion
In the initial phase of the pandemic, large platform trials 
reported the benefit of corticosteroids (mainly low/inter-
mediate doses) in SARS-CoV-2 AHRF [1, 2]. Recently, 
using all the available data included in a systematic 
review and meta-analysis [7], the Cochrane network 
concluded that systemic corticosteroids plus usual care 
probably reduces the number of deaths from any cause 
slightly, up to 30  days. No definite conclusion could be 

drawn about the number of deaths from any cause up to 
120 days or on the optimal dose and duration of corticos-
teroids given to the patients.

In this post hoc analysis using a Bayesian approach, we 
first confirmed the absence of any treatment benefit on 
Day 60 mortality associated with high-dose DXM com-
pared to low/intermediate doses of DXM (Table 2, Fig. 1). 
The Bayesian approach was considered, because it allows 
to reflect the uncertainty in treatment effect, illustrated 

Table 2 Bayesian estimation of treatment effects of DXM20 vs DXMSoc across baseline subsets, looking for treatment‑by‑subset 
interactions

In each subset, hazard ratio (HR) of death within the first 60 days (with 95% credibility intervals, CrI) were computed, with posterior probability of benefit or harm; 
then potential heterogeneity in effect across subsets was measured on the ratio of both HR

CRP C reactive protein, O2 oxygen, HFNO High-Flow Nasal Oxygen, CPAP Continuous Positive Airway Pressure, IMV invasive mechanical ventilation, IL6 interleukin 6, 
SAPS Simplified Acute Physiology Score, HR hazard ratio, Pr probability
a Defined as either ferritin level > 1000 μg/L or CRP > 100 mg/L

Subsets Posterior quantities

HR death, 95% 
credible interval

Pr benefit 
(HR < 0.95)

Pr harm (HR > 1.05) HR ratio (95% credible int) Pr interaction 
(HR ratio > 1.2)

All 0.95 (0.66–1.37) 0.511 0.290

Age, years

  < 70 0.68 (0.37–1.23) 0.865 0.077 1.00 0.84

 ≥ 70 1.15 (0.72–1.83) 0.22 0.64 1.69 (0.79–3.66)

Days since symptoms

  < 7 0.59 (0.46–0.75) 0.999  < 0.0001 1.00 0.99

 ≥ 7 1.16 (1.06–1.28)  < 0.0001 0.981 1.99 (1.52–2.56)

Body temperature, °C 0.58

  < 38 0.96 (0.63–1.45) 0.487 0.335 1.00

 ≥ 38 0.93 (0.47–1.71) 0.526 0.357 0.97 (0.49–1.79)

Inflammationa

 No 0.94 (0.30–2.79) 0.507 0.422 1.00 0.68

 Yes 0.91 (0.44–2.16) 0.541 0.366 0.97 (0.44–2.59)

CRP, mg/L

  < 135 0.93 (0.51–1.67) 0.533 0.340 1.00 0.76

 ≥ 135 1.33 (0.74–2.38) 0.129 0.789 1.43 (0.79–2.59)

Ferritin, μg/L

  < 1120 1.87 (0.96–3.57) 0.023 0.957 1.00 0.99

 ≥ 1120 0.42 (0.21–0.84) 0.99  < 0.001 0.22 (0.09–0.58)

Ddimers, ng/mL

  < 940 0.63 (0.34–1.17) 0.906 0.051 1.00 0.99

 ≥ 940 1.52 (0.87–2.72) 0.050 0.904 2.41 (1.38–4.29)

IMV

 No 0.90 (0.53–1.43) 0.600 0.254 1.00 0.65

 Yes 1.02 (0.57–1.84) 0.401 0.463 1.14 (0.54–2.44)

SAPS II

  < 33 0.91 (0.43–1.88) 0.55 0.35 1.00 0.67

 ≥ 33 0.97 (0.63–1.51) 0.46 0.36 1.07 (0.46–2.57)

Remdesivir use

 No 1.15 (0.75–1.75) 0.191 0.660 1.00 0.91

 Yes 0.61 (0.29–1.18) 0.901 0.056 0.54 (0.25–1.03)
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through posterior densities of the HR of death. Moreover, 
by contrast to frequentist approaches, further probabilis-
tic statements could be derived from these distributions, 
such as the probability of benefit or harm, as well as the 
probability that the HR of death differs by 20% from one 
subset to another. This allowed us to quantify a 51% pos-
terior probability of a more than trivial benefit and a 
29% of a more than trivial arm of high-dose DXM in the 
whole sample. This result contradicts the Bayesian sec-
ondary analysis of the COVID-STEROIDS2 study [23]. 
The adjusted RR for 28  day mortality was 0.87 (95% CI 

0.73–1.03), with probabilities of any benefit, clinically 
important benefit, and clinically important harm of 94.8, 
80.7, and 0.9%, respectively. In addition to the difference 
in outcomes, many patient characteristics were very sim-
ilar, i.e., time from symptoms onset and randomization 
(9 days in the median in both studies), IMV rate (17 and 
21%), and age (mean 65 vs. 67 years). However, one-third 
of the patients from COVID-STEROIDS 2 were enrolled 
in low-income countries, with one-fifth randomized out-
side of the ICU. Moreover, remdesivir was used more 

Fig. 3 Posterior density of the hazard ratio of death within 60 deaths in DXM20 over DXMSoc group, according to subsets. Subsets were defined 
by age (< , > 70, Fig. 2a), by time since symptoms onset (< , > 7 days, Fig. 2b) and by remdesivir use or not (Fig. 2c)
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frequently in COVID-STEROIDS2 than in COVIDICUS 
(62 vs 26%).

The potential benefit of remdesivir in intensive care 
patients particularly those with IMV/ECMO patient 
remained a matter of uncertainty [35, 36]. A recent indi-
vidual patient data meta-analysis showed that remdesivir 
reduced mortality in patients hospitalized with COVID-
19 who required no or conventional oxygen support, but 
was underpowered to evaluate patients who were venti-
lated when receiving remdesivir. The effect size of rem-
desivir in patients with more respiratory support and the 
cost-effectiveness of remdesivir remain to be further elu-
cidated [37]. On the opposite a cohort study based on the 
PREMIER database including more than 40,000 patients 
found a very significant benefit of the use of remdesivir 
in ECMO/IMV patients [38]. The importance of the viral 
load (maximal at the early phase of the disease) might be 
more important than the intensity of oxygenation dete-
rioration in selecting patients accessible to remdesivir 
therapy.

The potential heterogeneity in the DXM20 effect 
according to the use of remdesivir observed in our 
study may explain some of the discrepancies between 
the effects of high-dose DXM in COVID-STEROIDS2 
and COVIDICUS. Indeed, in our study, there was a 90% 
chance of high-dose DXM benefit in patients receiv-
ing remdesivir compared to less than 20% in those who 
did not (Table 2). This is in agreement with the reported 
effect of corticosteroid therapy in delaying viral clear-
ance: a small effect towards delayed time to viral clear-
ance in young treated patients compared to young 
untreated patients was found in a large epidemiologic 
study [39]. In the same study, viral dynamics after hos-
pitalization was an independent predictor of mortal-
ity (HR = 1.31, p < 10–3). Finally, a secondary analysis of 
the DISCOVERY study comparing remdesivir with the 
standard of care found that remdesivir use was associ-
ated with a small but significant increase in viral clear-
ance [40]. We can, therefore, postulate that the potential 
benefit of high-dose DXM in the inflammatory process is 
offset by a detrimental effect on viral clearance. Remdesi-
vir therapy may suppress this deleterious effect.

We also found that the posterior HR of death in 
DXM20 vs DXMSoc was 0.59 when the time from 
symptoms onset was < 7  days, with an 99% probabil-
ity of interaction between this delay and the DXM20 
benefit; approximately one-quarter of both groups 
received remdesivir. In the RECOVERY study, a short 
delay between the first symptoms and randomization 
was associated with an insignificant impact of DXM-
Soc6 on Day 28 mortality suggesting that 6  mg dose 
was not large enough [1]. Time from symptoms onset 
to corticosteroid administration did not impact the 

corticosteroid effect in the Outcomerea cohort [16]. 
However, the interaction between time from symp-
toms onset and high dose benefit was not found in the 
COVID-STEROID2 trial [6]. One possible hypothesis is 
that inflammation is more important in patients whose 
respiratory status rapidly deteriorates with a possible 
higher benefit of a high dose of corticosteroids. This is 
in line with the 99% posterior probability of a beneficial 
effect in patients with high inflammation as reflected by 
a high ferritin level (above 1120 μg/L) compared to < 1% 
in those with lower levels. Unfortunately, the inflam-
mation characteristics of the patients included in the 
COVID-STEROID2 study are not available.

The relationship between inflammatory reactions and 
corticosteroid effects was also suggested during the 
early phase of the pandemic, although based on obser-
vational data [27]. Using a latent class variable model, 
the authors found significant heterogeneity in the corti-
costeroid effect on mortality across inflammatory phe-
notypes, with corticosteroid exposure associated with 
decreased mortality in the hyperinflammatory pheno-
type and increased mortality in the hypoinflammatory 
phenotype [27]. Finally, an individualization of the cor-
ticosteroid dose based on the level of inflammation was 
suggested by a preliminary study but remains to be fur-
ther evaluated [41]. The impact of hyperinflammation 
on the selection of patients who may benefit from high-
dose DXM requires further study.

Our study has some limitations. We used a Bayes-
ian modelling of the hazard of death. A multinormal 
model for the log hazard could have been used [30], but 
we choose to specify some model for the baseline haz-
ard [42]. Thus, we used a piecewise exponential base-
line hazard, with equally spaced knots while a random 
grid of timepoints could have been used [43]; neverthe-
less, the influence on posterior of prior specifications, 
including for the failure rates parameters, was evaluated 
and did not exhibit marked differences in results. The 
influence of inflammation status on the DXM20 effect 
differed according to the biomarker, and appeared more 
influenced by the ferritin level than by the CRP level, 
though discrepancies could rely on the choice of the 
cut-off points. We choose to rely on the literature or on 
the median value to limit overinterpretation of fishing. 
Moreover, the effect of Ddimers differed from that of 
ferritin; this could rely on sepsis-associated coagulopa-
thy irrespective of the other inflammatory pathways 
[44]. Last, we focused our analyses of treatment by sub-
set interaction to factors that have been evoked in pre-
vious studies of corticosteroid effects in SARS-CoV-2 
ARF. Of course, other effect modifiers could have been 
considered. However, the use of Bayesian analyses to 
unmask possible effect modifiers is considered the best 
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way to avoid enormous inflation of the risk of drawing 
erroneous conclusions [45]. Confirmed on all the sensi-
tivity analyses, the potential interests of high dose dex-
amethasone when the delay from the first symptom is 
less than 7 days, in non-elderly patients or in combina-
tion with remdesivir ought to be further explored.

Conclusions
Although no clear-cut evidence of an effect on 60-day 
mortality of high-dose corticosteroid therapy in patients 
with severe COVID-19 with ARF admitted to the ICU 
was observed, some subsets may benefit from such high-
dose steroids. Heterogeneity in effects according to age, 
time to ICU admission, and concomitant use of remdesi-
vir was evidenced. This might be emphasized by the con-
current use of remdesivir in prompting viral clearance. 
As previously this result remained to be confirmed but 
argue for the use of remdesivir when high dose of DXM is 
decided based on the short delay between the first symp-
toms and ICU admission. These hypotheses need to be 
confirmed in further studies.
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