
Zhang et al. Annals of Intensive Care          (2023) 13:122  
https://doi.org/10.1186/s13613-023-01217-7

RESEARCH

Predicting extubation in patients 
with traumatic cervical spinal cord injury using 
the diaphragm electrical activity during a single 
maximal maneuver
Rui Zhang1†, Xiaoting Xu1†, Hui Chen1,2, Jennifer Beck3,4,5, Christer Sinderby3,5,6, Haibo Qiu1, Yi Yang1 and 
Ling Liu1* 

Abstract 

Background The unsuccessful extubation in patients with traumatic cervical spinal cord injuries (CSCI) may result 
from impairment diaphragm function and monitoring of diaphragm electrical activity (EAdi) can be informative 
in guiding extubation. We aimed to evaluate whether the change of EAdi during a single maximal maneuver can 
predict extubation outcomes in CSCI patients.

Methods This is a retrospective study of CSCI patients requiring mechanical ventilation in the ICU of a tertiary 
hospital. A single maximal maneuver was performed by asking each patient to inhale with maximum strength dur-
ing the first spontaneous breathing trial (SBT). The baseline (during SBT before maximal maneuver), maximum (during 
the single maximal maneuver), and the increase of EAdi (ΔEAdi, equal to the difference between baseline and maxi-
mal) were measured. The primary outcome was extubation success, defined as no reintubation after the first extuba-
tion and no tracheostomy before any extubation during the ICU stay.

Results Among 107 patients enrolled, 50 (46.7%) were extubated successfully at the first SBT. Baseline EAdi, maxi-
mum EAdi, and ΔEAdi were significantly higher, and the rapid shallow breathing index was lower in patients who 
were extubated successfully than in those who failed. By multivariable logistic analysis, ΔEAdi was independently 
associated with successful extubation (OR 2.03, 95% CI 1.52–3.17). ΔEAdi demonstrated high diagnostic accuracy 
in predicting extubation success with an AUROC 0.978 (95% CI 0.941–0.995), and the cut-off value was 7.0 μV.

Conclusions The increase of EAdi from baseline SBT during a single maximal maneuver is associated with successful 
extubation and can help guide extubation in CSCI patients.
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Introduction
Patients with traumatic cervical spinal cord injury (CSCI) 
typically require mechanical ventilation due to com-
plete or partial denervation of the diaphragm and inter-
costal muscles, paralysis of the thoracic and abdominal 
walls during their acute admission [1, 2]. Tracheostomy 
is preferred when prolonged mechanical ventilation is 
anticipated [3]; however, about one-third to two-thirds 
of patients with respiratory failure following CSCI can 
be extubated and weaned successfully during acute hos-
pitalization [4–7]. Given that an early primary tracheos-
tomy, as opposed to a secondary tracheostomy following 
extubation failure or late tracheostomy, may decrease 
ICU mortality and length of stay [8, 9], it is essential to 
accurately distinguish between CSCI patients who can be 
extubated and those who require long-term mechanical 
ventilation and will perhaps benefit from tracheotomy. 
Although many studies have investigated the risk factors 
for extubation failure [5, 10] and early tracheostomy after 
CSCI [11–14], the results are debatable. How to precisely 
predict the extubation outcome of CSCI patients and 
when to perform tracheostomy are still challenging.

Factors associated with neural pathways, such as the 
American Spinal Injury Association (ASIA) impairment 
scale A grade or B grade and high neurological level of 
injury, were crucial in determining extubation outcome 
and tracheostomy performance [10, 14]. Injuries above 
the level of phrenic motor neurons (primarily located at 
C3–C5) can cause both diaphragm and expiratory mus-
cle paralysis, leading to inspiratory failure and inadequate 
clearance of secretions, resulting in extubation failure. 
Since the diaphragm is the main muscle involved in 
inspiration [3], the disruption of innervation to the dia-
phragm may be critical in determining whether patients 
with CSCI can be extubated successfully. It has been 
found that negative inspiration force generated by surro-
gate measurements of needle electromyography (EMG) 
of the diaphragm best predicted the ability to wean from 
the ventilator in CSCI patients, compared with the fluor-
oscopic examination of the diaphragm, bedside spirom-
etry, and ASIA scales [15].

However, the needle EMG is invasive, cannot be con-
tinuously monitored, and is prone to artifacts, such as 
cross-talk from other muscles. When the patient uses 
the diaphragm as the primary respiratory muscle with 
intactness of phrenic nerve conduction, and assuming 
that the crural diaphragm activity can represent the total 
diaphragm activity, esophageal recordings of diaphragm 
electrical activity (EAdi) can reflect the respiratory drive 
[16]. As a substitute and optimization of needle EMG, 
EAdi make it possible to continuously and less inva-
sively monitor the respiratory neuromuscular function. 
EAdi can be used to monitor changes in respiratory drive 

and effort and has provided valuable information during 
spontaneous breathing trial (SBT) for evaluating extu-
bation readiness [17, 18]. Herein, we designed a “single 
maximal maneuver” test to monitor the maximum EAdi 
during the maximal inspiration in CSCI patients during 
SBT. The EAdi monitoring and the change of EAdi dur-
ing forced breathing could indicate the extent of phrenic 
nerve injury and the preservation of neuromuscular 
function. We calculate ΔEAdi as the difference between 
the maximum EAdi during a simple “single maximal 
maneuver” and the EAdi during SBT. The study aimed 
to investigate the association between ΔEAdi and extu-
bation outcomes in CSCI patients and further evaluate 
whether ΔEAdi can predict extubation success.

Methods
Patients
This retrospective cohort study enrolled traumatic CSCI 
patients who underwent mechanical ventilation and were 
admitted to the intensive care unit (ICU) of Zhongda 
Hospital, Southeast University, Nanjing, China, from 
June 2014 to April 2023. Inclusion criteria were: (1) age 
18 years or older; (2) traumatic CSCI patients with a neu-
rologic level of injury of C1 to C8 by the ASIA standard 
impairment scale grade A to D [19]; (3) with invasive 
mechanical ventilation due to acute respiratory failure; 
(4) with a dedicated nasogastric tube with nine electrodes 
that allow to continuously measure EAdi (EAdi catheter, 
Maquet, Solna, Sweden) in position. CSCI was defined 
as a radiologically confirmed injury to the cervical spinal 
column, combined with the clinical signs and symptoms 
consistent with that level.

The exclusion criteria were: (1) tracheostomy before 
ICU admission; (2) withhold or withdraw life-sustaining 
treatment due to other severe organ injuries; (3) cannot 
tolerate any SBT or complete instructional actions; (4) 
death occurred within seven days after injury; (5) postop-
erative mechanical ventilation without respiratory failure 
and had a ventilation duration of fewer than 24 h postop-
eratively; (6) no EAdi wave.

Single maximal maneuver
According to the local hospital protocol, the standard 
nasogastric tubes of CSCI patients were replaced by a 
dedicated 16-F nasogastric tube with nine electrodes that 
allow for the measurement of EAdi on the first day of 
ICU admission. All enrolled patients were ventilated with 
a Servo-I ventilator (Maquet, Solna, Sweden; software 
version 4.01). “Single maximal maneuver” was performed 
during the SBT to assist the decision for extubation and 
avoid delayed weaning. The sedative drugs were dis-
continued or retained at low doses to avoid accidental 
catheter dislocation. A 30-min SBT was conducted with 
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continuous positive airway pressure (CPAP) of 5  cmH2O 
at the prescribed inspired fraction of oxygen and followed 
by a blood gas analysis. Baseline EAdi, tidal volume (VT), 
and rapid shallow breathing index (RSBI) were recorded 
during CPAP. Baseline EAdi and VT were calculated as 
the mean value of the five consecutive stable breaths. 
Baseline neuroventilatory efficiency (NVE) was calcu-
lated as the ratio of VT and EAdi during inspiration [18]. 
When the patient can tolerate the CPAP for the initial 
three minutes, the “single maximal maneuver” was per-
formed by asking the patient to breathe with maximum 
strength without airway occlusion (twice at 30  s inter-
vals), and the maximum inspiratory EAdi (Max EAdi) 
and the maximum VT (Max VT) were recorded (average 
value of the two breaths). EAdi-derived parameters were 
calculated as follows: relative activation of the diaphragm 
at baseline (Rel EAdi) = baseline EAdi/Max EAdi × 100%, 
an absolute increase of EAdi (ΔEAdi) = Max EAdi–base-
line EAdi, and relative increase of EAdi (ΔEAdi%) = (Max 
EAdi–baseline EAdi)/baseline EAdi × 100%.

During the SBT, patients should be switched to the 
previous ventilation mode when they met the following 
criteria: (1) tachypnea with respiratory rate > 40 breaths/
min; (2) hypoxemia with  SpO2 < 90%; (3) hypercapnia 
with end-tidal carbon dioxide pressure increased by 
more than 20  mmHg, or consciousness deterioration 
or agitation; (4) hemodynamic instability with systolic 
blood pressure (SBP) < 90 mmHg, or 60 beats/min > heart 
rate > 140 beats/min, or severe arrhythmias; (5) other 
conditions by attending physician’s judgment.

Local weaning protocol
All CSCI patients were screened daily (between 8:00 and 
10:00 am) by the physician in charge to assess the possi-
bility of the SBT according to the local protocol. Patients 
who could succeed in the 30-min SBT and cuff leak test 
and demonstrated adequate cough ability were extubated. 
The online supplement gives more details about the 
screening for eligibility of SBT, criteria for SBT failure, 
assessment for cuff leak test and cough strength, local 
protocols of post-extubation noninvasive respiratory sup-
port, and reintubation criteria. The physician in charge 
decided on the timing of tracheostomy in patients who 
could not tolerate the SBT or failed the first extubation.

Measurements and data collection
The following data were extracted from the local trauma 
center (Level 2) registries and the ICU clinical informa-
tion system: demographics, mechanism of injury, associ-
ated injuries, comorbidities, Injury Severity Score (ISS), 
cervical operation, level of CSCI, ASIA classification, 
and AIS score on the day of ICU admission. The Acute 
Physiology and Chronic Health Evaluation (APACHE) II 

score and Sequential Organ Failure Assessment (SOFA) 
score were assessed during the first 24 h of ICU admis-
sion. Glasgow Coma Score (GCS), Richmond Agitation-
Sedation Scale (RASS), breathing pattern, and blood gas 
analysis were recorded during SBT. Clinical outcomes 
were recorded, including extubation and weaning out-
comes, the incidence of ventilator-associated pneumonia 
(VAP), total duration of mechanical ventilation, ventila-
tor-free days within 7, 14, and 28 days after mechanical 
ventilation, ICU and hospital length of stay, and ICU and 
hospital mortality.

The primary outcome was first extubation success, 
defined as no need for reintubation after the first extuba-
tion and no tracheostomy before any extubation during 
the ICU stay. Patients who were reintubated, tracheos-
tomized or died before ICU discharge without extuba-
tion were classified into unsuccessful extubation group. 
Secondary outcomes included weaning success, defined 
as no ventilatory support for more than 48 consecutive 
hours or transfer from ICU without the ventilator, ICU 
and hospital mortality, ventilator-associated pneumo-
nia incidence, ICU and hospital length of stay. The trial 
was registered at ClinicalTrials. gov (NCT04089956) 
and approved by the Institutional Ethics Committee of 
Zhongda Hospital (2022ZDSYLL337-P01). All data were 
kept confidential, and written informed consent was 
waived due to the retrospective observational nature.

Statistical analysis
Continuous data were reported as mean (standard devia-
tion, SD) or median (interquartile range [IQR]), and 
categorical data as the number of events (percentages). 
Differences between groups were assessed with the t-test 
or Mann–Whitney test for continuous variables and the 
Chi test for categorical variables. All statistical analyses 
were done using MedCalc (version 20.0.3) and RStudio 
(version 1.3.1073). Two-tailed p < 0.05 was considered 
statistically significant.

We first evaluated the association between ΔEAdi and 
extubation outcomes using the multivariable logistic 
regression model. Based on published studies, clinical 
relevance [5, 20], and given the principle of ten events per 
variable [21], variables including SOFA, RSBI, high cer-
vical spinal cord injury and  PaO2/FiO2 were selected for 
the multivariable analysis. The variance inflation factor 
(VIF) method was used to examine the colinearity, and 
variables with VIF ≥ 5 suggested multicolinearity (details 
in Additional file 1).

Then, we assessed the accuracy of ΔEAdi for classifying 
patients who would succeed extubation. Receiver operat-
ing characteristic (ROC) curve was performed, and the 
area under ROC curve (AUROC) was calculated. We also 
calculated the AUROC of ΔEAdi after adjustment for 
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aforementioned variables. Considering existing studies 
have revealed predictive value of RSBI, NVE, tidal volume 
for successful extubation [18, 20], we compared the pre-
dictive performance of ΔEAdi and these variables. Boot-
strap estimated the 95% confidence interval of AUROC 
and the Delong test was used to compare AUROCs of 
different variables. The optimal threshold of continuous 
variables was chosen to maximize the Youden index. We 
further calculated the net reclassification index (NRI) to 
explore whether the ΔEAdi improved successful extuba-
tion classification over other parameters. Decision curve 
analysis was conducted by quantifying the net benefits at 
different threshold probabilities.

Results
Characteristics of the enrolled population
Among 190 adult CSCI patients receiving invasive 
mechanical ventilation during the study, 107 were 
enrolled in the final analysis (Fig.  1). Of the 107 cases, 
the average age was 60 (14) years, and 89 (83.2%) were 
male. More than half of the patients suffered from high 
(C1–C4) CSCI, and 44.9% had complete motor injury 
(ASIA grade of A and B). Both baseline EAdi and the 
ΔEAdi during the single maximal maneuver were lower 
in patients with high CSCI (Fig. 2) and complete motor 
injury (Additional file  1: Table  S2). 99 (92.5%) patients 

Fig. 1 Flowchart of the study. CSCI, cervical spinal cord injury; ICU, intensive care unit; EAdi, diaphragm electrical activity

Fig. 2 Boxplot showing the distribution of A baseline EAdi 
in patients ranged from C1–C7, compared with C7, *p < 0.05, 
**p < 0.01, ***p < 0.001. B C1–C4 vs. C5–C7, and (C) absolute change 
of EAdi in C1–C4 vs. C5–C7
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underwent surgical intervention for fixation of cervi-
cal spinal column and decompression of spinal cord. 
Fifty (46.7%) patients succeeded in the first extubation, 
and 11 received post-extubation high-flow nasal oxy-
gen therapy. Of the 57 (53.3%) unsuccessfully extubated 
patients, 48 were tracheostomized without extubation, 
and nine were reintubated. Overall, 51 (47.7%) patients 
underwent tracheostomy after 6 [3, 9] days of initializing 
invasive mechanical ventilation, and 84 (78.5%) patients 
were weaned from ventilator. The plausible clinical rea-
sons for the unsuccessful extubation included impaired 
cough efficacy (29/57), followed by SBT failure (19/57) 
during extubation screening, and post-extubation res-
piratory failure (9/57). Eight patients died in the ICU, and 
ten patients died during hospitalization.

Comparisons between successful and unsuccessful 
extubation patients
Patients in the successful and unsuccessful extubation 
group were balanced at baseline regarding sex, age, RASS, 
mechanism of cervical injury, associated injuries, and 
comorbidities (Table  1 and Additional file  1: Table  S1). 
Compared with the extubation unsuccess group, patients 
who succeeded in the first extubation were generally 
less severe, as indicated by the lower APACHE II, SOFA 
score, and ISS, in addition to the lower incidence of 
the high neurologic level of injury and complete motor 
dysfunction.

Table  2 shows the respiratory parameters during SBT 
and the “single maximal maneuver.” In patients who were 
extubated successfully, the EAdi and tidal volume, both 
at baseline and the maximal, were significantly higher, 
and the ΔEAdi was also higher (Fig.  3A), while respira-
tory rate, RSBI, and  PaCO2 were substantially lower 
than those who failed extubation. It is worth noting that 
the relative activation of the diaphragm during SBT, 
expressed as the ratio of baseline EAdi to the maximum 
EAdi (Rel EAdi%), the baseline and maximal NVE were 
higher in the unsuccessful extubation group.

Table 3 shows that, compared to the unsuccessful extu-
bation group, patients who succeeded in the extubation 
had a shorter total mechanical ventilation duration and 
length of stay in the ICU and hospital. The incidence of 
ventilator-associated pneumonia and hospital mortality 
was also lower in the extubation success group.

Diagnostic performance of ΔEAdi in prediction 
of extubation success
The multivariable analysis (Additional file  1: Table  S4) 
reveals that the higher ΔEAdi (OR 2.03, 95% CI 1.52–
3.17, p < 0.001) during the single maximal maneuver 
was independently associated with the higher likelihood 
of successful extubation. ΔEAdi during single maximal 

maneuvers demonstrated high discriminative power for 
the prediction of extubation success, and the AUROC 
was 0.978 (95% CI 0.941–0.995). With a cut-off value of 
7.0 μV, ΔEAdi had a sensitivity of 100 (92.9–100) % and 
specificity of 89.5 (78.5–96.0) % for predicting extubation 
success (Fig. 3B and Table 4). The high diagnostic accu-
racy of ΔEAdi persists after adjustment of confounders.

Values for other variables tested for extubation predict-
ability are given in Additional file 1: Table S5. AUROC for 
ΔEAdi was significantly higher than that for RSBI, base-
line VT, ΔVT, baseline NVE and maximal NVE. ΔEAdi 
resulted in an additive NRI in classifying successful extu-
bation patients over these parameters (Additional file 1: 
Table  S5). Likewise, the decision curve analysis showed 
that the net benefit of ΔEAdi surpassed that of other pre-
dictors (Additional file 1: Fig. S2). More details about the 
diagnostic performance of mentioned variables are pre-
sented in Additional file 1: Table S5 and Fig. S1.

Discussion
We have proposed a novel method to guide the extuba-
tion for CSCI patients. The major finding of this study 
is that CSCI patients who could be extubated success-
fully are characterized by increased neural activation 
of the diaphragm during a “single maximal maneuver”. 
The absolute increase of EAdi during the maximal effort 
inspiration is independently associated with successful 
extubation, and it has a better discriminatory perfor-
mance for predicting extubation success in CSCI patients 
compared with the classic approaches.

Although the clinical challenges of respiratory and ven-
tilator management in patients with spinal cord injury 
are well-appreciated, there are no structured protocols 
for weaning and extubation attempts in patients with 
spinal cord injury [22]. The overall extubation rate after 
attempts was 52.3% in the present study, which was lower 
than the 75.4% extubation success rate reported in the 
ATS guideline for weaning in inhomogeneous patients 
[23]. The result might highlight the need for a specific 
protocol of extubation and weaning for CSCI patients 
rather than using traditional approaches to improve the 
possibility of extubation success or depending on con-
ventional clinical signs to determine extubation out-
comes. Higher respiratory rate, RSBI, and increased 
 PaCO2 are all classic clinical signs associated with extu-
bation failure [20, 24]. Compared with the traditional 
predictors, the novel measurement of ΔEAdi during “sin-
gle maximal maneuver” was found to have more power 
to discriminate between groups for successful and unsuc-
cessful extubation. These results can potentially modify 
and improve clinical practice in extubating patients with 
CSCI. The EAdi monitoring could solve the dilemma of 
making difficult decisions about extubation in this subset 
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of patients and facilitate the weaning procedure through 
neurally adjusted ventilatory assistance.

Diaphragm is the primary inspiratory muscle, and 
impaired diaphragm function is the main reason for 
extubation failure in CSCI patients [15]. EAdi is corre-
lated with the transdiaphragmatic pressure generated by 
contraction of diaphragm during inspiration, while the 

correlation coefficient and the EAdi at quiet breathing 
exhibit marked variability [25]. It has been reported that 
changes in EAdi can predict SBT failure and guide ven-
tilator weaning [17]. Hence, we focused on the variation 
of EAdi during the maximal inspiration in CSCI patients 
to reflect the preservation of neuromuscular function 
and guide extubation readiness. Unsurprisingly, we found 

Table 1 Demographic and clinical characteristics of included patients

APACHE, Acute Physiology and Chronic Health Evaluation; ASIA, American Spinal Injury Association; ISS, injury severity score; GCS, Glasgow Coma Score; SOFA, 
Sequential Organ Failure Assessment

Overall (n = 107) Successful extubation 
(n = 50)

Unsuccessful extubation 
(n = 57)

p value

Age, year 60 (14) 59 (13) 60 (15) 0.866

Male, n (%) 89 (83.2) 39 (78.0) 50 (87.7) 0.279

Body mass index 23.9 [22.8, 25.9] 24.2 [22.9, 26.6] 23.5 [22.7, 25.4] 0.230

APACHE II 13 [9, 18] 10 [8, 14] 15 [11, 20] 0.001

SOFA 5 [3, 7] 4 [2, 6] 6 [4, 8] < 0.001

ISS 17 [14, 25] 16 [11, 18] 21 [16, 25] 0.001

GCS 15 [13, 15] 15 [14, 15] 15 [12, 15] 0.019

Richmond Agitation-Sedation Scale 0.181

 − 1 11 (10.3) 3 (6.0) 8 (14.0)

 0 67 (62.6) 30 (60.0) 37 (64.9)

 1 29 (27.1) 17 (34.0) 12 (21.1)

C-spine injury level, n (%) 0.035

 C1 6 (5.6) 2 (4.0) 4 (7.0)

 C2 10 (9.3) 1 (2.0) 9 (15.8)

 C3 31 (29.0) 12 (24.0) 19 (33.3)

 C4 18 (16.8) 9 (18.0) 9 (15.8)

 C5 18 (16.8) 12 (24.0) 6 (10.5)

 C6 12 (11.2) 5 (10.0) 7 (12.3)

 C7 12 (11.2) 9 (18.0) 3 (5.3)

 C1–C4, n (%) 65 (60.7) 24 (48.0) 41 (71.9) 0.020

ASIA grade, n (%)  < 0.001

 A 16 (15.0) 5 (10.0) 11 (19.3)

 B 32 (29.9) 7 (14.0) 25 (43.9)

 C 49 (45.8) 28 (56.0) 21 (36.8)

 D 10 (9.3) 10 (20.0) 0 (0.0)

ASIA A + B, n (%) 48 (44.9) 12 (24.0) 36 (63.2)  < 0.001

Cause of injury, n (%) 0.563

 Falling 42 (39.3) 17 (34.0) 25 (43.9)

 Motor vehicle collision 52 (48.6) 26 (52.0) 26 (45.6)

 Other 13 (21.1) 7 (14.0) 6 (10.5)

Surgical intervention, n (%) 99 (92.5) 49 (98.0) 50 (87.7) 0.099

Comorbidity, n (%)

 Cardiovascular system 39 (36.4) 17 (34.0) 22 (38.6) 0.771

 Respiratory system 0 (0.0) 0 (0.0) 0 (0.0) −

 Neurological system 9 (8.4) 3 (6.0) 6 (10.5) 0.622

 Endocrine system 14 (13.1) 5 (10.0) 9 (15.8) 0.549

 Digestive system 5 (4.7) 4 (8.0) 1 (1.8) 0.285

 Immune dysfunction 5 (4.7) 2 (4.0) 3 (5.3) 1.000
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a higher ΔEAdi during “single maximal maneuver” was 
independently associated with successful extubation. 
The specific cut-off point (7.0 μV) of the ΔEAdi provided 
both high sensitivity and specificity, allowing the identifi-
cation of patients who could be extubated early.

The relative activation of the diaphragm during SBT 
was higher in the unsuccessful extubation group, which 
was probably due to the less motor units caused by 

spinal cord injury [26]. In our study, the complete motor 
injury and high cervical injury were more prevalent in 
patients with unsuccessful extubation. On the condi-
tion of reduced number of motor neurons and impaired 
phrenic nerve conduction, patients may use more of their 
available capacity to breathe at quiet breathing. In con-
trast, the increase in EAdi was modest during the maxi-
mal inspiration. In addition, the higher NVE during SBT 

Table 2 Comparisons of respiratory variables during spontaneous breathing trial and the maximal maneuver between extubation 
success and failure group

EAdi, diaphragm electrical activity; Rel EAdi, relative activation of diaphragm at baseline;  FiO2, fraction of inspired oxygen; NVE, neuroventilatory efficiency; RSBI, rapid 
shallow breathing index; VT, tidal volume normalized to predicted body weight;  PaCO2, partial pressure of arterial carbon dioxide;  PaO2, partial pressure of arterial 
oxygen

Overall (n = 107) Successful extubation (n = 50) Unsuccessful extubation 
(n = 57)

p value

Respiratory rate, bpm 27 (6) 24 (5) 29 (6)  < 0.001

Baseline VT, mL/kg 4.6 [3.3, 5.5] 5.3 [4.6, 5.7] 3.3 [2.8, 5.1]  < 0.001

Maximal VT, mL/kg 9.3 [4.9, 11.4] 11.1 [9.7, 14.1] 5.0 [3.7, 8.9]  < 0.001

ΔVT, mL/kg 4.1 [1.7, 6.2] 6.2 [4.8, 8.7] 1.7 [1.1, 3.6]  < 0.001

RSBI 88 [62, 140] 72 [58, 88] 137 [78, 178]  < 0.001

Baseline EAdi, μV 5.9 [4.2, 8.0] 7.8 [6.2, 9.4] 4.3 [3.1, 5.7]  < 0.001

Maximal EAdi, μV 14.8 [6.8, 22.5] 22.5 [19.8, 27.8] 7.5 [4.6, 10.5]  < 0.001

Rel EAdi, % 48.5 [33.9, 58.8] 32.7 [27.7, 39.9] 57.9 [53.2, 65.6]  < 0.001

ΔEAdi, μV 8.1 [3.0, 15.6] 15.7 [11.5, 19.0] 3.1 [1.6, 5.0]  < 0.001

ΔEAdi, % 110 [70, 190] 210 [150, 260] 70 [50, 90]  < 0.001

Baseline NVE, mL/μV 51.6 [40.5, 67.1] 44.1 [35.9, 52.9] 60.6 [46.4, 74.1]  < 0.001

Maximal NVE, mL/μV 40.0 [31.5, 58.7] 32.0 [28.3, 36.5] 55.2 [41.9, 66.5]  < 0.001

pH 7.43 [7.41, 7.45] 7.43 [7.41, 7.46] 7.43 [7.41, 7.45] 0.913

PaCO2, mmHg 36.2 [32.1, 39.8] 33.5 [30.7, 37.5] 37.8 [34.9, 41.0] 0.001

PaO2/FiO2, mmHg 306.6 [248.3, 366.2] 335.5 [285.1, 386.5] 280.0 [220.8, 349.8]  < 0.001

Bicarbonate, mmol/L 24.0 [22.2, 26.5] 23.0 [20.8, 24.7] 25.9 [23.5, 27.6]  < 0.001

Lac, mmol/L 1.5 [1.1, 2.2] 1.5 [0.9, 2.2] 1.6 [1.1, 2.2] 0.559

Fig. 3 The performance of ΔEAdi to predict extubation outcomes. A comparison of ΔEAdi between the successful and unsuccessful extubation 
group; B receiver operating curve for ΔEAdi to predict extubation success
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and the single maximal maneuver in the unsuccessful 
extubation group seems surprising but can be explained. 
The NVE was calculated as the ratio of tidal volume and 
EAdi during inspiration. The tidal volume depends on the 
activation of diaphragm and other inspiratory muscles, 
and EAdi values are determined by the summation of 
potential of motor units [16]. In the unsuccessful extuba-
tion group, the accessory inspiratory muscles are possi-
bly activated to compensate for the ventilation. However, 
the less motor units and impaired phrenic nerve con-
duction could result in a pronounced reduction in EAdi, 
which in turn results in an elevation of NVE. Inconsistent 
with previous studies that enrolled patients with intact 
phrenic nerve conduction [18], our results showed that 
NVE could not be suitable for predicting extubation out-
comes in patients with partial or complete diaphragm 
denervation.

Our findings are partially consistent with a previ-
ous study demonstrating that diaphragm needle EMG 
[15] and the extent of diaphragm movement assessed 
via fluoroscopic examination during deep breathing 
were significantly correlated with ventilator weaning 
in CSCI patients [27]. Similarly, maximal inspiratory 
pressure generated from diaphragmatic activity at the 
time of extubation was independently associated with 

reintubation [28]. Although there are several methods 
to evaluate diaphragm function, including ultrasonog-
raphy, EMG, computerized tomography, magnetic reso-
nance imaging, and video fluoroscopy [29, 30], taking the 
minimal invasiveness and continuity of monitoring into 
account, esophageal recordings of EAdi, which have been 
validated for reliability in healthy subjects and in patients 
with respiratory dysfunction [18], can be a great tool to 
guide extubation at the bedside.

Our data confirm the previous results that a subset of 
patients with high CSCI and respiratory failure can be 
successfully extubated during acute hospitalization [6, 7]. 
In the present study, 24/65 (36.9%) of patients with high 
cervical injury (C1–C4) were extubated successfully, and 
47/65 (72.3%) were weaned from the ventilator, which 
is consistent with previous reports, showed that almost 
two-thirds of patients with C1–C4 injury were weaned 
before discharge [27, 31]. Since the phrenic nerve origi-
nates predominantly from C4, with a variable contri-
bution from C3 and C5, lesions above or within these 
levels will increase the likelihood of ongoing ventilator 
dependency. Therefore, these individuals with impaired 
diaphragm function or complete diaphragm denervation 
cannot be weaned from mechanical ventilation [10, 32]. 
The patients in extubation success and unsuccess groups 

Table 3 Clinical outcomes of included patients

ICU, intensive care unit; LOS, length of stay; MV, mechanical ventilation; VFD, ventilator-free day; VAP, ventilator-associated pneumonia;

Overall (n = 107) Successful extubation 
(n = 50)

Unsuccessful extubation 
(n = 57)

p value

Weaning success, n (%) 84 (78.5) 50 (100.0) 34 (59.6)  < 0.001

Patients tracheotomized, n (%) 51 (47.7) 0 (0.0) 51 (89.5)  < 0.001

Time to tracheostomy, days 6 [3, 9] – 6 [3, 9] –

Duration of MV, days 5 [2, 18] 2 [1, 2] 16 [9, 30]  < 0.001

VFDs by day 7, days 1 [0, 5] 5 [5, 6] 0 [0, 0]  < 0.001

VFDs by day 14, days 8 [0, 12] 12 [12, 13] 0 [0, 0]  < 0.001

VFDs by day 28, days 22 [1, 26] 26 [26, 27] 4 [0, 14]  < 0.001

Incidence of VAP, n (%) 23 (21.5) 4 (8.0) 19 (33.3) 0.003

Hospital survival, n (%) 97 (90.7) 49 (98.0) 46 (80.7) 0.035

LOS of ICU, days 10 [3, 22] 3 [1, 6] 19 [12, 30]  < 0.001

LOS of hospital, days 19 [13, 31] 15 [12, 24] 25 [15, 35] 0.010

Table 4 Predictive accuracy of ∆EAdi to predict extubation success in cervical spinal cord injury patients

EAdi: diaphragm electrical activity, AUROC: area under receiver operating characteristic, PPV: positive predictive value, NPV: negative predictive value
a Adjusted by SOFA, high cervical injury,  PaO2/FiO2, and rapid shallow breathing index

AUROC Sensitivity, % Specificity, % Youden index PPV, % NPV, %

Crude analysis

 ΔEAdi, μV 0.978 (0.941, 0.995) 100 (92.9, 100) 89.5 (78.5, 96.0) 0.895(0.803, 0.945) 89.3 (79.6, 94.7) 100(94.5, 100)

Adjusted  analysisa

 ΔEAdi, μV 0.988 (0.963, 0.997) 96.0 (86.3, 99.5) 94.7 (85.4, 98.9) 0.907(0.782, 0.945) 94.1 (84.2, 98.0) 96.4 (87.4, 99.1)
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differed in injury level, ISS, and ASIA grades. Still, after 
multivariable analysis, ΔEAdi remained independently 
associated with successful weaning.

Of clinical interest, the tracheostomy rate among 
CSCI patients was 47.7% in this study, consistent with 
the wide range of 10 to 80% from several studies on spi-
nal cord injury patients. The decision on tracheostomy is 
greatly influenced by conditions, such as the lesion level 
and airway complications [1, 11, 12, 14, 33], yet the tra-
cheostomy conversion and timing remain inconclusive 
[2, 9, 34]. Most studies agree that early tracheostomy 
in patients with CSCI, typically identified as performed 
within seven days, was associated with improved out-
comes [2, 9]. For instance, early tracheostomy can facili-
tate ventilator weaning, reduce ICU and hospital length 
of stay, and enhance patient comfort [9, 35]. Notably, in 
this study, the median duration of mechanical ventilation 
before tracheostomy was six days. With these in mind, 
we believed that identifying CSCI patients who could be 
expected to fail extubation and thus require prolonged 
mechanical ventilation would be of substantial clinical 
importance. To single these patients out for early trache-
ostomy by ΔEAdi during “single maximal maneuver” will, 
at the very least, on the one hand, reduce the complica-
tions and risks of reintubation and, on the other hand, 
prevent unnecessary tracheostomy.

Several limitations need to be acknowledged in our 
study. The main limitation of the study is the nature of 
the monocentric, non-controlled design. External valida-
tion or prospective study may further verify the results. 
While we conducted the study in a tertiary hospital and 
the provincial trauma center, the standardized therapy 
and weaning protocol may have enhanced the credibil-
ity of our findings. Second, patients who could not toler-
ate SBT or had no EAdi wave due to high cervical injury 
level or complete injury were excluded from our cohort. 
For those patients, early tracheostomy seems to be more 
beneficial than extubation attempt. Third, we did not 
perform airway occlusions during the single maximal 
maneuver, making it impossible to evaluate the pres-
sure electricity index. Fourth, EAdi monitoring ignores 
the electrical activity generated by the inspiratory mus-
cles other than the diaphragm, which are often activated 
in patients with respiratory failure following spinal cord 
injury to maintain ventilation [36]. Moreover, EAdi sur-
rogates the bilateral action potential while some patients 
may have asymmetric diaphragm injury which may affect 
the extubation outcomes.

Conclusions
In conclusion, increased EAdi during “single maximal 
maneuver” is independently associated with success-
ful extubation and can help guide early extubation 

attempts in patients with CSCI. A multicenter prospec-
tive study with more participants is necessary before 
definitive conclusions.
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