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Abstract 

Background Characterizing patient–ventilator interaction in critically ill patients is time‑consuming and requires 
trained staff to evaluate the behavior of the ventilated patient.

Methods In this study, we recorded surface electromyography ( sEMG ) signals from the diaphragm and intercostal 
muscles and esophageal pressure ( Pes ) in mechanically ventilated patients with ARDS. The sEMG recordings 
were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were 
used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies 
(ineffective, auto‑, and double triggers and double efforts), delayed and synchronous triggers were computationally 
classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. 
For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes , blinded 
toward each other, the sEMG signals, and the algorithmic results. We also classified patient–ventilator interaction 
and calculated asynchrony indices with manually detected inspirations in Pes as a reference for automated asynchrony 
classification and asynchrony index calculation.

Results Spontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation 
of the accuracy of the algorithms using 3057 inspiratory efforts in Pes demonstrated reliable detection performance 
for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 
0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes . The average delay 
of automatically detected inspiratory onset to the Pes reference was −79 ms/29 ms for the two algorithms. Our 
findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same 
deviation of 0.06± 0.13 to the Pes‑based reference.

Conclusions Our study demonstrates the feasibility of automating the quantification of patient–ventilator 
asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony 
and support improving patient–ventilator interaction.
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Introduction
Patient–ventilator asynchrony is caused by a temporal 
mismatch between spontaneous patient efforts and venti-
latory assistance regarding triggering and cycling off. It is 
associated with less successful weaning [1], longer dura-
tion of mechanical ventilation [2] and higher mortality 
[3]. Furthermore, asynchrony is believed to cause patient 
discomfort [4]. Several studies have investigated the 
prevalence of asynchrony in patient–ventilator interac-
tion during different ventilatory settings such as pressure 
support ventilation with intubation [1, 2, 5–7], noninva-
sive ventilation (NIV) [4, 6] and home-NIV [8, 9].

Different types of asynchrony have been observed in 
mechanically ventilated patients, such as ineffective, 
auto-, and double triggers that disrupt the normal breath-
ing rhythm. Beyond that, assisted breaths can be affected 
by minor asynchrony events, sometimes referred to as 
dyssynchronies, which occur when triggering or cycling 
is too early or too late [10]. Identifying these classes relies 
on recognizing specific patterns in the airway pressure 
and flow curves [6, 10–12] or segmenting the patient’s 
inspiratory efforts [13, 14].

A large number of publications deal with the precise 
quantification of asynchrony—different asynchrony 
indices have been proposed, among others, the 
ratio of asynchronous breaths to all breaths [2] and 
the NeuroSync index [13]. In any case, a reliable 

representation of the patient’s spontaneous breathing 
activity is required to characterize patient–ventilator 
interaction accurately. Table 1 summarizes how previous 
studies have approached this issue. Several authors have 
attempted to detect and classify asynchronous events 
in the airway pressure and flow curves both manually 
[2, 10, 11] and automatically [6, 12]. Furthermore, 
a growing body of literature exists on patient–
ventilator asynchrony detection using esophageal 
pressure Pes [1, 5, 6, 10], invasively measured diaphragm 
electromyogram EAdi [5, 7, 11, 13] or noninvasive surface 
electromyography (sEMG ) [4, 8, 9, 14, 15].

In recent studies, asynchrony classification and 
evaluation are typically performed manually. However, 
manual analysis of waveforms in clinical routine is 
time-consuming and requires trained staff. Therefore, 
detecting the patient’s inspiratory activity in  EAdi has 
already been successfully implemented in an automated 
fashion, which is made possible by its high signal-to-
noise ratio. To this end, Sinderby et al. [13] proposed to 
use a constant threshold of 0.5 µV. When the threshold 
is exceeded, an inspiratory onset is detected; a drop to 
less than  70  % of the inspiratory maximum indicates 
the activity end. The automated analysis of esophageal 
pressure is complicated by cardiac artifacts and the chest 
wall recoil pressure. The first algorithmic approaches for 
patient effort segmentation in  Pes have been described 

Table 1 Selection of previous works on detecting and evaluating patient–ventilator asynchrony

Publication Signals (reference) Analysis

Chao et al. (1997) [1] V̇  , Paw , Pes Manual classification of ineffective efforts

Parthasarathy et al. (2000) [5] V̇  , Pes , Pdi , ( EAdi) Manual segmentation of patient effort

Thille et al. (2006) [2] V̇  , Paw Manual classification of trigger asynchrony events

Mulqueeny et al. (2007) [6] V̇  , Paw , ( Pdi) Automated detection of ineffective and double triggering

Vignaux et al. (2009) [4] V̇  , Paw , sEMGdi
Manual classification of asynchrony events

Piquilloud et al. (2011) [7] V̇  , Paw , EAdi Manual classification of asynchrony events

Colombo et al. (2011) [11] V̇  , Paw , ( EAdi) Manual classification of asynchrony events

Carteaux et al. (2012) [15] V̇  , Paw , sEMGdi , sEMG of neck muscles Manual classification of asynchrony events

Sinderby et al. (2013) [13] Paw , EAdi Manual and automated segmentation of inspirations and classifica‑
tion of minor and major asynchrony events

Ramsay et al. (2015) [8] Paw , sEMGic , RIP of chest wall and abdomen Manual classification of asynchrony events

Garcia‑Castellote et al. (2017) [16] V̇  , Pdi , invasive EMGdi , Ldi Manual and automated segmentation of patient effort

Duiverman et al. (2017) [9] Paw , sEMGdi , sEMGic , sEMG of scalene muscles Manual classification asynchrony events

Estrada et al. (2018) [18] V̇  , sEMGdi
Automated segmentation of patient effort

Koopman et al. (2018) [14] Paw , sEMGdi Manual and automated segmentation of patient effort

Mojoli et al. (2022) [10] V̇  , Paw , ( Pes) Manual segmentation of patient effort and classification of asyn‑
chrony events

Bakkes et al. (2023) [12] V̇  , Paw , ( Pes) Automated segmentation of patient effort and classification 
of asynchrony events

Telias et al. (2023) [17] Pes , Paw , V̇ Automated segmentation of patient effort and classification 
of asynchrony events
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by Castellote  et al. [16]. Recently, Telias  et al. [17] have 
automatically detected asynchrony based on esophageal 
pressure.

Respiratory sEMG represents a noninvasive alterna-
tive to EAdi and Pes for detecting patient efforts. Previous 
studies investigated sEMG recordings of the diaphragm 
or auxiliary muscles in manual asynchrony detection 
[4, 8, 9, 15]. An automated method for detecting sEMG 
would provide valuable assistance for the mentioned 
reasons. Unfortunately, there is currently no established 
approach for this. Applying a constant threshold for the 
onset detection seems unreasonable for sEMG signals. 
Compared to EAdi , the signal-to-noise ratio is lower, and 
the noise level varies over time. For this reason, there is 
ongoing research on automated onset detection in sEMG 
signals with more sophisticated algorithms. For exam-
ple, Estrada  et al. [18] presented a dynamic threshold-
ing approach. Also, an sEMG-based implementation of 
the NeuroSync index [13] has already been proposed 
and implemented by Koopman  et al. [14]; however, the 
obtained results were not validated via comparison 
against an independent reference in their study.

This study aims to investigate and validate an auto-
mated characterization of patient–ventilator interaction 
using sEMG , potentially promoting broader use of this 
noninvasive monitoring tool.

Methods
Clinical data
We included adult patients with ARDS, who were admit-
ted to one of the participating intensive care units (ICU) 
at Charité – Universitätsmedizin Berlin, the tertiary care 
university hospital in Berlin, Germany. Patients were 
excluded if they had a preexisting lung condition that 
would significantly change lung mechanics (e.g., COPD 
GOLD 3-4, pulmonary fibrosis, cystic fibrosis), unfavora-
ble prognosis with expected death within the following 
days, or pregnant or breastfeeding patients. Consent was 
obtained from the patient proxy or legal representative 
and from the patients themselves as soon as they could 
give consent. The study was approved by the local ethics 
committee (EA4/005/19) and registered at the German 
Clinical Trials Register (DRKS00017138).

We defined three treatment phases within our obser-
vatory trial as a model of the clinical pathway of ARDS 
treatment. The first measurement was conducted within 
the first 48  h after ICU admission. During this phase, 
ventilation with high PEEP and low tidal volumes was 
achieved by mandatory ventilation. The second recording 
was scheduled during the reduction of sedation, defined 
as the first day with goal RASS > −2 , which was set by 
treating physicians independently from the research 
team. If no patient respiratory activity was detected in 

ventilator ( Paw and flow) or esophageal pressure curves, 
this measurement was repeated the following day. The 
third measurement was performed during the first spon-
taneous breathing trial, indicated by the treating physi-
cian. Again, if no respiratory activity was detected, this 
measurement was repeated the following day. During 
all three treatment phases, patients were ventilated with 
pressure controlled ventilation with the possibility to 
trigger the ventilator or pressure support ventilation with 
controlled breaths as a fallback. Throughout the study, we 
used only flow triggering. All ventilator parameters were 
set by the treating physicians.

We obtained airway pressure, airflow, and esophageal 
pressure measurements for each recording with 100  Hz 
sampling rate. Airway pressure and flow were accessed 
via the Dräger Medibus interface. Esophageal pressure 
was obtained via the NutriVent catheter after ensuring 
the correct catheter position and balloon filling with an 
occlusion maneuver [19]. We recorded surface EMG with 
five electrodes at a sampling rate of 1000  Hz using an 
sEMG amplifier prototype provided by Dräger (Dräger-
werk AG  & Co. KGaA, Lübeck, Germany). Electrodes 
for the parasternal channel were placed left and right 
parasternally in the second intercostal space. For the 
diaphragm channel electrodes were placed on the cos-
tal margin at the left and right medioclavicular line. The 
ground electrode was placed at the center of the sternum. 
All measurements were performed in a semirecumbent 
position with a head elevation of 30 ◦.

Data preprocessing
Cardiogenic pressure artifacts in the esophageal pres-
sure  Pes were suppressed [20] to recognize inspiratory 
onsets more accurately. The detection of the end of inspi-
ration was done in the derived pressure  Pmus . For this 
purpose, the chest wall elastance was determined, and Pes 
was corrected for volume-dependent elastic recoil of the 
chest wall. Refer to Additional file 1 for further details.

The sEMG signals were denoised by filtering power-
line interference and removing electrical cardiac artifacts 
[21]. To obtain the sEMG envelope, the denoised signal 
was smoothed using a root-mean-square filter with a 
250 ms window. To compensate for the total signal pro-
cessing and neuromechanical delay prior to further 
analyses, we parameterized the filter lag to minimize the 
delay between electrical muscle activity and Pmus across 
our cohort. Details regarding the data preprocessing can 
be found in Additional file 1.

Automated sEMG segmentation
Two different algorithms were employed for detecting 
the start of inspiration in the selected sEMG envelope. 
The first algorithm (triangle algorithm) was designed 
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for maximum robustness and highly accurate detection 
of the exact onset of electrical activity. In contrast, the 
second algorithm (adaptive thresholding algorithm) was 
tailored to be highly sensitive to small patient activities. 
Detailed descriptions of sEMG detection algorithms are 
provided in Additional file 1.

Algorithm 1 Triangle algorithm for maximum robustness and highly accurate detection of the exact onset of electrical activity.

Algorithm 2 Adaptive thresholding algorithm designed for high sensitivity to minimal patient activities.

Prior to the segmentation, both sEMG channels were 
analyzed computationally to check if patient activity was 
present in the signal, and the signal quality was evaluated 
based on the signal-to-noise ratio. Channels that showed 
patient activity and sufficient signal quality were auto-
matically segmented by both algorithms. If no channel of 
a recording was valid, no sEMG segmentation was per-
formed. In case both channels were found to be usable 
for segmentation, for each breath, the earlier of the two 
detected onsets was used as the start of electrical activity. 
Details are given in Additional files 1 and 2.

Automated characterization of patient–ventilator 
interaction
The interaction of patient and ventilator was 
characterized computationally by comparing the detected 
inspiratory effort against the timing of ventilatory 
support. As no internal trigger signal of the ventilator 
was available, trigger and cycling-off times were obtained 
from automatically segmented airway pressure  Paw . 
The mechanical breath was assumed to start with the 
first sample of the positive ramp in the airway pressure 
signal and to end with the first sample of the falling edge. 
We employed six different classes of patient–ventilator 
interaction, visualized in Fig. 1. For overlapping segments, 
we calculated the trigger delay �ttrigger = tPaw − tpatient 
with the beginning of the ventilator support tPaw and the 

onset of patient activity tpatient . If a single patient effort 
and single ventilator support overlapped and the trigger 
delay was  �ttrigger ≤ 250ms , the breath was classified 
as synchronous, which is based on the definitions given 
by Mojoli  et al. [10]. Under the same conditions, but 
with �ttrigger > 250ms , the trigger was considered to 
be delayed. Breaths were classified as ineffective and 

auto-triggers when a patient’s effort did not overlap 
with any ventilator support or vice versa. If a single 
patient effort overlapped with two ventilator supports, 
the first was classified according to its trigger delay, 
and the second was classified as a double trigger. We 
also observed a similar constellation, where two patient 
efforts intersected with a single ventilator support, which 
we referred to as a double effort [22].

The asynchrony index is defined similarly to Mojoli et 
al. [10] as the number of major asynchronous events 
(ineffective, auto- and double trigger, and double efforts) 
divided by the total number of breaths.

Expert reference
As a first step toward creating a reference for the timing 
of spontaneous breathing activity, onsets of spontane-
ous patient efforts were annotated. Independent of each 
other, two experts labeled the onset of negative deflec-
tion in the filtered Pes signal. Paw and flow curves were 
provided simultaneously, but the experts were blinded 
toward each other and to the sEMG signals. The anno-
tated onset times by both experts were averaged on a 
breath-by-breath basis, provided the difference between 
their annotations was no more than 250 ms. The remain-
ing annotations were considered invalid. For each 
annotated patient effort, the end of inspiration was com-
putationally detected in the calculated  Pmus waveform, 
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likewise by identifying the point at which Pmus fell below 
70 % of its maximum value.

Data analysis
Detection evaluation
Each inspiratory effort detected in the sEMG was eval-
uated as a true positive if it overlapped with the expert 
reference segmentation. If it did not overlap with the ref-
erence, it was a false positive, and all remaining breaths 
detected by the experts in Pes were false negatives. As 
performance metrics, we determined the sensitivity and 
the positive predictive value.

Classification evaluation
The aforementioned performance metrics (sensitivity and 
positive predictive value) were calculated individually 
in each patient–ventilator interaction class by consider-
ing all other classes as negative labels. We also calculated 
the specificity of algorithms with respect to each class. 
Finally, aggregated performance scores were determined 
by averaging the sensitivity, positive predictive value, 
and specificity across all classes. Here, two variants were 
used, one using the arithmetic mean and one using the 

weighted mean (where weights correspond to the num-
ber of elements in each class).

Statistics and deviation analysis
To account for varying numbers of breaths in different 
recordings, performance measures were calculated for 
each recording separately. We used the Wilcoxon rank-
sum test to compare the median values of two distribu-
tions. Levene’s test was used to test for differences in 
variances of two distributions. The deviation between 
detected patient effort onsets, trigger delays, and asyn-
chrony index estimates across all patients is expressed 
as mean ± standard deviation. Differences were analyzed 
via the limits of agreement method by Bland and Altman 
[23]. As there were different numbers of breaths in each 
patient, we used a variant of the original method that 
accounts for repeated measurements; refer to [24] for 
details.

Results
A total of 84 recordings were carried out in 36 patients. 
The patient characteristics are reported in Table  2. 
On average 6  min (IQR 4 to 8 min) were analyzed per 
recording. The goal was to evaluate approximately  100 

ventilator support

patient effort

tPaw

tpatient

∆ttrigger = tPaw − tpatient

synchronous trigger

∆ttrigger ≤ 250ms

delayed trigger

∆ttrigger > 250ms

ineffective trigger auto-trigger

double trigger double effort

synchronous or delayed trigger

Fig. 1 Definitions of considered patient–ventilator interactions based on the segmentation of the ventilator support ( ) in Paw ( )  
and the patient effort ( ) in sEMG ( ). Reference segmentations of the patient effort are based on Pes ( ). For distinguishing 
synchronous and delayed triggers, a threshold of 250ms is applied to the derived trigger delay �ttrigger ( ) [10]. The absence of ventilator 
support or patient activity corresponds to an ineffective or auto‑trigger, respectively. If a single patient effort overlaps with two ventilator supports, 
the first is classified according to the trigger delay, whereas the second is called a double trigger. Similarly, if two patient efforts overlap with a single 
ventilator support, the second is a double effort
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breaths in each recording. The two experts consistently 
recognized inspiratory activity in 34 Pes recordings. For 
the analysis, only annotations in which the experts agreed 
were used, which led to a total of 3305 breaths. Two 
examples of non-matching and thus excluded inspiratory 
efforts are shown in Fig.  2. A disagreement between 
experts occurred in 480 (14 %) annotated patient efforts 
in Pes . Table  3 provides an overview of the number of 
annotated inspirations in  Pes and the detected efforts 
in both sEMG channels. An illustrative excerpt with all 
recording channels and detection results is given in Fig 3.

Detection validation against Pes reference
The total number of patient efforts detected in sEMG 
and the number of true positives, false positives, and 
false negatives are reported in the bar chart in Fig. 4. The 
same figure provides the distribution of sensitivity and 
positive predictive value across the included datasets 
and for both algorithms. The median sensitivity was 0.97 
(IQR  0.91 to  0.99) for the triangle algorithm and  1.00 
(IQR 0.98 to 1.00) for the adaptive threshold algorithm. 
The positive predictive value results were 0.94 (IQR 0.85 
to 1.00) and 0.87 (IQR 0.72 to 0.93) for the triangle and 
the adaptive thresholding algorithm, respectively. Across 
all recordings, the triangle algorithm showed fewer false 
positives and higher positive predictive value ( p = 0.011 ) 
but more false negatives and lower sensitivity ( p = 0.005 ) 
than the adaptive thresholding algorithm. Examples for 
breaths, where inspiratory effort could not be detected in 
sEMG but in Pes and vice versa, are presented in Fig. 5. 
The temporal deviation tsEMG

automatic − t
Pes
manual per breath was 

( −0.08 ± 0.27) s for the triangle algorithm and (0.03 ± 
0.23) s for the adaptive thresholding algorithm. To better 
conceive the magnitude of the mean deviation from 
manual references, refer to the highlighted inspiration 
in Fig.  3. Here, the deviation of automatic detection in 
sEMG and manual annotation in Pes was very close to the 
mean deviation across all inspirations.

Patient–ventilator interaction
The number of correctly and incorrectly classified 
breaths from the two algorithms can be seen in Table 4. 
Figure 6 shows the distribution of sensitivity, specificity, 
and positive predictive value across all recordings 
for all asynchrony classes and both algorithms. Both 
approaches achieve high median sensitivity ≥ 0.81 
and specificity ≥ 0.87 across all classes. The adaptive 
thresholding algorithm was less precise in classifying 
ineffective triggers, whereas the triangle algorithm 
showed partially incorrect classifications for auto-
triggers. Across all classes, we did not find significant 
differences in the total classification performance 

between both methods ( p ≥ 0.131 for all classes). 
In this context, it should be mentioned that double 
triggers  (n = 40 ) and double efforts  (n = 6 ) occurred 
only rarely, and the significance is therefore limited.

Across all recordings, the median misclassification 
rate between synchronous and delayed triggers is 12  % 
(IQR 6 to 26 %) for the triangle algorithm and 6 % (IQR 
2 to 11  %) for the adaptive threshold algorithm. This 
distinction was made using the fixed threshold for the 
trigger delay ( 250ms ). To better understand this analysis, 
Fig. 7 presents Bland–Altman plots for the trigger delay. 
As the first algorithm detected inspiratory effort earlier, 
leading to an average increase of the trigger delay by 
79  ms, it tended to classify delayed triggers instead of 
synchronous ones. In contrast, the adaptive thresholding 
algorithm showed only a minor average systematic 
deviation of −36 ms with similar scattering ( p = 0.211).

The evaluated asynchrony indices of each recording are 
displayed in Bland–Altman plots in Fig. 8. The difference 
between sEMG-based and Pes-based asynchrony index 
was 0.06± 0.13 in both algorithms. Overall, both 
algorithms performed similarly well, and we could 
not find a significant difference between algorithms 
( p = 0.537).

Discussion
The present study addresses the automated 
characterization of patient–ventilator interaction based 
on sEMG measurements of the diaphragm and the 
intercostal muscles in a cohort of patients with severe 
ARDS. Recorded sEMG signals were preprocessed, and 
inspiratory patient efforts were segmented automatically 
using two different detection algorithms. Subsequently, 

Table 2 Characteristics of analyzed patients ( n = 36)

BMI body mass index, HAP hospital-acquired pneumonia, CAP community-
acquired pneumonia

Characteristic Result
Median (IQR)

Age (years) 61.5 (56.5 to 65.25)

Gender

   Male 25

   Female 11

Weight (kg) 90 (80 to 104)

BMI (kg m−2) 29.2 (26 to 34.7)

SOFA Score on admission 12.5 (10 to 15)

Cause of ARDS

   HAP 6

   CAP 14

   Aspiration 9

   Covid 7
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patient efforts were related to the ventilator pressure 
support and assigned to six classes: synchronous, delayed, 
auto-, ineffective, and double trigger, as well as double 
efforts. From all the events detected, an asynchrony 
index was calculated to quantify the level of asynchrony 
[10]. The automatically detected efforts, assigned classes 
of patient–ventilator interaction, and asynchrony 
indices were validated through esophageal pressure Pes . 
The results show that there is potential to measure 
the spontaneous breathing activity noninvasively, to 

detect onsets of electrical activity in an automated 
way, and to distinguish different asynchronous events 
computationally.

Our study makes several significant contributions 
to the field of patient–ventilator interaction analysis. 
First, the comparative analysis of two algorithms for 
sEMG detection allowed us to assess the strengths 
and limitations of each algorithm. Second, the study 
population of ARDS patients provides valuable insights 

Fig. 3 Waveforms and segmentation example. From top to bottom, 
this figure shows the airway pressure Paw with the segmented 
ventilator support, the esophageal pressure Pes after cardiac 
artifact removal with black lines representing annotated inspiration 
starts, the muscular pressure Pmus derived from Pes which is used 
for finalizing the reference segmentation of patient inspiratory effort, 
the electrical muscle activity sEMG with automated segmentation 
results and finally the summary of all segmented inspirations in Paw , 
Pes and sEMG . Based on the segmentation results, the asynchrony 
classification and the asynchrony index calculation are performed. 
During annotation of Pes the experts were blinded towards each 
other, the sEMG signal and the automated segmentation results

Fig. 4 Detection validation against Pes reference. The validity 
of both approaches is examined by comparing automatically 
detected inspirations in the sEMG and manual annotations 
in the esophageal pressure. The upper plot overviews the total 
number of correctly and incorrectly detected patient efforts. The 
last entry shows how many of the detected breaths were assigned 
to an uncertain reference where the experts disagreed. The lower 
plot shows binary metrics to evaluate the detection performance. 
For sensitivity and positive predictive value, the distribution 
over patients and recordings is given. Black lines denote the median 
value, and white lines visualize the interquartile range

Table 3 Overview on the number of annotated breaths in Pes and detected breaths in sEMG

 In setting (a), the number of annotated or automatically detected breaths in all recordings where patient activity was observed or detected is given. The second 
setting (b) considers only recordings with valid expert annotations and detected efforts in at least one sEMG channel (with sufficient signal-to-noise ratio). These are 
used for validating the detection performance of the algorithms against the annotations in Pes . The last setting (c) uses only recordings with valid expert annotations, 
detected efforts in sEMG , and ventilation modes that allow triggering by the patient. This excludes signal sections during CPAP. In all cells, the number of recordings is 
given in brackets. For the sEMG signals, the number of detected breaths by both algorithms is given (triangle algorithm/adaptive thresholding algorithm)

Signal/setting Inspirations (recordings)

(a) All recordings (b) Detection validation (c) Asynchrony validation

Pes 3305 (34) 3057 (32) 2684 (32)

sEMG (costal margin) 2909/3248 (25) 2789/3116 (24) 2410/2728 (24)

sEMG (parasternal) 3652/4143 (33) 3400/3859 (30) 3052/3476 (30)

sEMG (earliest) 3910/4450 (35) 3650/4165 (32) 3198/3693 (32)
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on the methods’ applicability to critically ill patients. In 
addition, we applied our methodology across different 
treatment phases, ensuring its applicability throughout 
the course of patient care. Therefore, we employed 
objective signal criteria such as signal-to-noise ratio 
to determine the suitability of the sEMG signal for 
automated analysis in each recording. Furthermore, we 
computationally characterized the patient–ventilator 
interaction, which would enable automated sEMG-
based asynchrony monitoring. We rigorously validated 
our findings against expert annotations in  Pes , a well-
established reference [6, 10].

Both sEMG detection algorithms showed significant 
differences in detection accuracy metrics, which 
can be attributed to their differences in threshold 
calculation and threshold adaption speed. The adaptive 
thresholding algorithm missed very few inspirations 
compared to expert annotations in Pes , because it quickly 
adjusts the threshold, allowing the detection of even 
minor activities. However, results indicate that small 
disturbances, background noise, or residual cardiac 
artifacts could lead to falsely detected inspirations. The 
triangle algorithm yielded a lower false positive rate in 
detecting inspirations. This could be associated with its 
threshold calculation, which only considers activities 
with amplitudes reaching at least 40 % of the maximum 
amplitude. This approach minimizes the impact of 
smaller artifacts on the detection performance. On the 
downside, small activities could be missed more easily. 

Using the triangle algorithm, most auto-triggers were 
detected, but there were also many false positives, where 
small patient efforts were missed. Classification based 
on the second algorithm showed a reverse tendency. 
Compared to the reference, more ineffective efforts were 
captured, but auto-triggers were partially misclassified 
as synchronous. On average, onsets detected by the 
triangle algorithm were earlier than manual references, 
because the algorithm, originally proposed by Garcia-
Castellote  et al. [16], positions the beginning of activity 
precisely at the start of the rising edge. In contrast, the 
adaptive thresholding algorithm was slightly later than 
the experts because the onset was detected only once 
the threshold was exceeded. The steeper the slope of 
the sEMG envelope and the higher the signal amplitude, 
the closer these two points move together. Low activity 
amplitudes often result in flat slopes, and thus, more 
uncertainty in the exact position of the electrical activity 
onset.

There are several reasons why automatic segmentation 
might deviate from the annotations in  Pes . On the one 
hand, captured electrical activity may be crosstalk from 
other muscles and misinterpreted by algorithms. On the 
other hand, it is also possible that an inspiratory patient 
effort was recognized in sEMG but not in Pes . This could 
occur when the pressure amplitude is small or the effort 
is superimposed by the volume component of an assisted 
breath, particularly in cases of muscle weakness or low 
effort. These phenomena can hardly be distinguished and 

Table 4 Patient–ventilator interaction classification results

Each row in the table represents the reference events based on manual annotations in Pes and each column provides the asynchrony events based on automated 
sEMG detection

Pes reference Synchronous 
trigger

Delayed 
trigger

Auto-trigger Ineffective 
trigger

Double 
trigger

Double effort Not detected

Triangle algorithm

Synchronous trigger 1825 328 108 1 11 2 13

Delayed trigger 66 185 2 3 20 0 1

Auto‑trigger 149 43 334 0 6 0 1

Ineffective trigger 0 1 0 66 0 0 46

Double trigger 0 0 2 0 37 1 0

Double effort 0 0 0 0 0 4 2

Not detected 14 12 1 182 0 10 0

Adaptive thresholding algorithm

Synchronous trigger 2080 154 41 1 8 1 3

Delayed trigger 149 104 1 2 18 1 2

Auto‑trigger 225 38 268 0 1 0 1

Ineffective trigger 0 2 0 72 0 0 39

Double trigger 0 1 1 0 38 0 0

Double effort 0 0 0 0 0 5 1

Not detected 8 3 1 474 0 19 0
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Fig. 6 Patient–ventilator interaction classification metrics. For the triangle algorithm ( ) and the adaptive thresholding algorithm ( ), the six 
classes and 32 recordings, the sensitivity, specificity and positive predictive value are evaluated. This plot visualizes the distribution of the three 
metrics over the datasets. Black lines indicate the median value and white lines mark the interquartile range. In addition, the results of the different 
classes are summarized on the right side, where Total denotes the average over all classes and in Total (weighted) considers the class frequency. In 
this way, the latter represents a reality‑oriented outcome

Fig. 7 Bland–Altman plots of the trigger delay. The trigger delay �ttrigger denotes the difference between the beginning of the ventilator 
support tPaw and the inspiratory patient effort tpatient . In both plots, the reference �t

Pes
trigger is built upon the manual annotation of patient efforts 

in the esophageal pressure Pes . The left graph compares the trigger delay obtained from the sEMG segmentation results by the triangle algorithm 
and the second plot shows the results corresponding to the adaptive thresholding algorithm. Each sample in both plots denotes one synchronous 
or delayed trigger event. Different patients and recordings are characterized by means of colors. Solid lines represent the mean difference 
and dashed lines mark the ±1.96 Std intervals around average
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would be reflected in a lower positive predictive value 
in Fig.  4. Due to the lack of a better reference, it is not 
yet clear if the sEMG detector might, in some cases, be 
more sensitive to small efforts than Pes . In other cases, 
inspirations in the sEMG were superimposed by noise, 
or the crosstalk increased temporarily. This led to false 
negatives and affected the detection sensitivity. In Fig. 4, 
it is evident that some recordings showed good tempo-
ral alignment of onsets between sEMG and Pes , whereas 
others exhibit systematic biases. These systematic biases 
cannot be explained through neuromechanical or sig-
nal processing delay. One explanation might be that the 
contributions of different muscles were measured. With 
sEMG , diaphragm and accessory muscles were recorded 
separately and the latter potentially recruited signifi-
cantly earlier or later [25]. The systematic differences 
between the detected onsets in sEMG and the manual 
reference in Pes affected the distinction between synchro-
nous and delayed triggers. A solution might be a modifi-
cation of the 250 ms threshold to better account for this 
systematic difference.

Asynchrony indices offer a simplified perspective and 
condense complex information into a single value. When 
comparing the automatically determined indices against 
reference indices, underlying information is lost, and 
classification may differ yet still result in the same index. 
This is why we have extensively discussed the two algo-
rithms and their classification performance in previous 
sections. Overall, both automated approaches provide 
reliable asynchrony index estimates.

In validating automated characterization of patient–
ventilator interaction, consideration should also be given 
to the shortcomings of the reference. Although esopha-
geal pressure is an established measure for detecting 
inspiratory patient effort [1, 6, 10, 12], sometimes  Pes 

amplitudes were very low and hardly recognizable due 
to low patient activity, muscle weakness, and the volume 
component in the signal. Temporarily, the pressure signal 
might also have been disrupted, e.g., by cardiac artifacts 
or peristalsis. The preselection of valid reference events 
showed that the manual recognition and segmentation 
of patient efforts in the Pes curve were partly unreliable 
because experts disagreed in 14 % of annotated breaths. 
Another point of discussion is recognizing the end of 
the inspiratory effort in the esophageal pressure wave-
form. The manual annotation in Pes might be problem-
atic due to the unknown esophageal volume component. 
We found an acceptable transparent solution for that, 
estimating Pmus from Pes by removing the volume com-
ponent and applying Sinderby’s rule to the Pmus-wave-
form (70  % amplitude on the falling edge). Finally, this 
study does not distinguish between auto-triggers and 
controlled breaths triggered as a fallback. Consequently, 
there could be a few controlled breaths among the 
detected auto-triggers.

The study also revealed that recording the sEMG of 
intercostal muscles is a valuable extension to the dia-
phragm, demonstrated by the number of detected efforts 
in this channel. In 21 out of 43 cases, parasternal sEMG 
showed a better signal-to-noise ratio and less crosstalk 
during expiration than the electrode channel above the 
costal margin measuring the diaphragm. This could be 
due to the proximity of the abdominal muscles, which 
might contract during expiration, resulting in crosstalk.

Conclusion and outlook
The present results show that the detailed characteriza-
tion of patient–ventilator interaction in a noninvasive 
and automated manner is similarly accurate to manual 
and invasive assessments. We found that the two applied 
algorithms provide reliable asynchrony index results.

Fig. 8 Bland–Altman plots of asynchrony indices. Based on the classification of patient–ventilator interaction, asynchrony indices AIsEMG are 
determined for the sEMG segmentation results of the triangle algorithm ( ) and the adaptive thresholding algorithm ( ). The reference AIPes 
is calculated based on the expert annotations in Pes . Solid lines represent the mean difference and dashed lines mark the ±1.96 Std intervals 
around average
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In future works, the detection performance might be 
improved by automated artifact and crosstalk rejection 
[26]. Furthermore, the complementary properties of the 
two sEMG detection algorithms suggest the potential 
for combining the strengths of both approaches, e.g., by 
averaging over or switching between them.

We hypothesize that when the patient-generated flow 
is weak or absent due to muscle weakness, sEMG activity 
would still be measurable, allowing us to detect patient–
ventilator asynchrony automatically. In this case, trigger-
ing based on noninvasively measured electrical activity 
could reduce patient–ventilator asynchrony. Interpreting 
Pes curves requires experienced clinical staff. In addition, 
the positioning of the balloon catheter is prone to error 
for untrained physicians. Thus, an automated approach 
based on simple electrical measurements with adhesive 
electrodes on the thorax could prove to be highly benefi-
cial in clinical routine.
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