CORRECTION

Open Access

Correction: COVID-19 associated pulmonary aspergillosis in critically-ill patients: a prospective multicenter study in the era of Delta and Omicron variants

Pierre Bay^{1,2,3,4*}, Etienne Audureau^{3,5,6}, Sébastien Préau⁷, Raphaël Favory⁷, Aurélie Guigon⁸, Nicholas Heming⁹, Elyanne Gault¹⁰, Tài Pham^{2,11,12}, Amal Chaghouri¹³, Matthieu Turpin¹⁴, Laurence Morand-Joubert^{15,16}, Sébastien Jochmans¹⁷, Aurélia Pitsch¹⁸, Sylvie Meireles¹⁹, Damien Contou²⁰, Amandine Henry²¹, Adrien Joseph²², Marie-Laure Chaix^{23,24}, Fabrice Uhel^{25,26}, Damien Roux^{25,26}, Diane Descamps²⁷, Malo Emery²⁸, Claudio Garcia-Sanchez²⁹, David Levy³⁰, Sonia Burrel^{31,32}, Julien Mayaux³³, Antoine Kimmoun^{34,35}, Cédric Hartard³⁶, Frédéric Pène³⁷, Flore Rozenberg³⁸, Stéphane Gaudry³⁹, Ségolène Brichler⁴⁰, Antoine Guillon⁴¹, Lynda Handala^{42,43}, Fabienne Tamion⁴⁴, Alice Moisan⁴⁵, Thomas Daix⁴⁶, Sébastien Hantz^{47,48}, Flora Delamaire⁴⁹, Vincent Thibault^{50,51}, Bertrand Souweine⁵², Cecile Henquell⁵³, Lucile Picard⁵⁴, Françoise Botterel^{3,55}, Christophe Rodriguez^{3,4,55}, Armand Mekontso Dessap^{1,2,3}, Jean-Michel Pawlotsky^{3,4,55}, Slim Fourati^{3,4,55†} and Nicolas de Prost^{1,2,3†} on behalf of the SEVARVIR investigators

Correction: Annals of Intensive Care (2024) 14:65 https://doi.org/10.1186/s13613-024-01296-0

Following publication of the original article [1], the authors identified an error in Tables 1 and 2.

In Table 1, the data for the "**Sex, females**" under the heading of "**CAPA patients**, **n** = **29**" should be **8** (**28**) not 5 (28).

The correct Table 1 is given in this correction.

In Table 2, the **data for Duration of vasopressors**, days under the heading of variable has been corrected in

[†]Slim Fourati and Nicolas de Prost contributed equally to this work.

The original article can be found online at https://doi.org/10.1186/s13613-024-01296-0.

*Correspondence: Pierre Bay

pierre.bay@aphp.fr

Full list of author information is available at the end of the article

this correction and the complete Table 2 is given in this correction.

The correct Table 2 is given in this correction.

In this article, the legend for Fig. 3 was incorrectly published.

Incorrect legend of Fig. 3:

Fig. 3 Unsupervised analysis of the clinical and biological characteristics of the by self-organized maps (SOMs). Unsupervised analysis by SOM automatically located patients with similar clinical and paraclinical parameters within 1 of 40 small groupings ("districts") throughout the map. The more similar the patients, the closer on the map. Each individual map shows the mean values or proportions per district for each characteristic: blue indicates the lowest average values, red the highest, with numbers shown for a selection of representative districts in each SOM. For instance, immunosuppressed patients were more frequently located in the upper districts and also had higher serum urea levels, less frequent Delta variant infection, higher SAPS II and SOFA scores and

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Table 1 Patient's characteristics at the time of their admission to the intensive care unit according to the CAPA status

Variable	n/nª	All patients, n = 566	Non-CAPA patients, n=537	CAPA patients, n = 29	р
Demographics and comorbidities					
Sex, females		191 (34)	183 (34)	8 (28)	0.5
Age, years		66 [57–74]	66 [57–74]	67 [60–70]	0.7
Diabetes		179 (33)	168 (33)	11 (39)	0.5
Obesity		183 (33)	172 (32)	11 (38)	0.5
Chronic heart failure		52 (10)	52 (10)	0	0.1
Hypertension		281 (52)	266 (52)	15 (54)	0.8
Chronic respiratory failure		78 (14)	75 (15)	3 (11)	0.8
Chronic renal failure		113 (21)	107 (21)	6 (21)	0.9
Cirrhosis		8 (1)	7 (1)	1 (4)	0.3
Immunosuppression		189 (35)	174 (34)	15 (54)	0.03
None		357 (65)	344 (66)	13 (46)	0.09
Solid organ transplant		67 (12)	63 (12)	4 (14)	
Onco-hematological malignancies		59 (11)	54 (10)	5 (18)	
Others ^b		62 (11)	56 (11)	6 (21)	
Number of comorbidities	518/28	2 [1-3]	2 [1-3]	2 [1-4]	0.5
Clinical frailty scale	528/29	3 [2-4]	3 [2-4]	3 [2–4]	0.9
SARS-CoV-2 infection and vaccination					
Previous SARS-CoV-2 infection	506/28	40 (7)	39 (8)	1 (4)	0.8
SARS-CoV-2 vaccination		326 (59)	306 (59)	20 (69)	0.3
SARS-CoV-2 serology at ICU admission					
Unavailable		279 (49)	271 (50)	8 (28)	0.04
Negative ^c		129 (23)	119 (22)	10 (34)	
Positive		158 (28)	147 (27)	11 (38)	
First symptoms-ICU admission, days	535/29	7 [3–10]	7 [3–10]	8 [6–11]	0.03
SARS-CoV-2 RNA detection in naso- pharyngeal swabs, Ct	359/17	21 [18–25]	21 [18–25]	23 [20–26]	0.2
SARS-CoV-2 variant	387/24				
Omicron		313 (76.2)	298 (77)	15 (62.5)	0.1
Delta		98 (23.8)	89 (23)	9 (37.5)	
Patients severity upon ICU admission and b	iological featur	es			
WHO 10-point scale	353/29	6 [6–6]	6 [6–6]	6 [6–8]	0.09
SAPS II score	486/28	35 [27–45]	35 [27–44]	39 [26–53]	0.1
SOFA score	505/28	4 [3-6]	4 [3–6]	4 [3-8]	0.3
PaO ₂ /FiO ₂ ratio, mmHg	520/28	124 [79–188]	124 [79–190]	127 [76–170]	0.5
Arterial lactate level, mM	506/27	1.5 [1-2.2]	1.5 [1–2.3]	1.9 [1.1–2.2]	0.6
Blood leukocytes, G/L	529/29	8.9 [5.6–13]	8.9 [5.7–13]	3.9 [6.5–12.4]	0.2
Blood lymphocytes, G/L	434/26	0.5 [0.3–0.9]	0.5 [0.3–0.9]	0.4 [0.5–0.9]	0.9
Blood platelets, G/L	529/29	206 [146–298]	207 [148–289]	191 [107–315]	0.5
Serum urea level, mM	523/29	8 [6–15]	8 [5–14]	12 [7–18]	0.06
Serum creatinine level, μM	532/29	89 [63–141]	89 [62–138]	97 [73–235]	0.1
Lung parenchyma involvement, %	274/18	50 [37–75]	50 [37–75]	50 [40–70]	1
Oxygen/ventilatory support					0.2
Oxygen		100 (18)	97 (18)	3 (10)	
High flow oxygen		269 (48)	255 (48)	14 (48)	
NIV/C-PAP		58 (10)	57 (11)	1 (3)	
Invasive MV		135 (24)	124 (23)	11 (38)	
ECMO		15 (3)	15 (3)	0	1
Vasopressor support		86 (15)	82 (16)	4 (14)	0.8

Table 1 (continued)

Results are N (%), means (± standard deviation) or medians (interquartile range, i.e., quartile 1; quartile 3)

CAPA COVID-19-associated pulmonary aspergillosis, ICU intensive care unit, Ct cycle threshold, WHO World Health Organization, SOFA Sequential Organ Failure Assessment, SAPS II Simplified Acute Physiology Score II, NIV non-invasive ventilation, C-PAP continuous-positive airway pressure, MV mechanical ventilation, ECMO extracorporeal mechanical ventilation

Two-tailed p-values come from unadjusted comparisons using Chi-square or Fisher's exact tests for categorical variables, and t-tests or Mann–Whitney tests for continuous variables, as appropriate. No adjustment for multiple comparisons was performed. Bolded p-values are significant at the p < 0.05 level

^a Numbers of non-CAPA/CAPA patients data available

^b Includes HIV infection, long-term corticosteroid treatment, and other immunosuppressive treatments

^c Defined as < 30 Binding Antibody Units (BAU)/mL

Table 2 Management and outcomes of patients with severe SARS-CoV-2 infection during their intensive care unit stay according to the CAPA status

Variable	n/n ^a	All patients, n = 566	Non-CAPA patients, n = 537	CAPA patients, n = 29	р
Invasive MV		242 (43)	220 (41)	22 (76)	0.0002
Prone positioning		171 (32)	153 (30)	18 (64)	0.0002
MV duration, days	207/21	12 [5-22]	10 [5–20]	28 [17–34]	0.0001
Ventilator-free days at D28		25 [0–28]	26 [0-28]	0 [0–15]	0.0004
ECMO support		32 (6)	29 (5)	3 (10)	0.2
Duration of ECMO, days	25/3	27 [10–55]	29 [10–62]	19 [15–20]	0.4
Vasopressor support		218 (39)	197 (37)	21 (72)	0.0003
Duration of vasopressors, days	192/20	4 [1-12]	4 [1-10]	16 [9–30]	0.0002
Renal replacement therapy		69 (12)	60 (11)	9 (31)	0.001
Ventilator-acquired pneumonia (among IMV) ^b		126 (52)	108 (49)	18 (82)	0.003
Time from IMV to VAP first episode, days		6 [2–10]	6 [2–9]	11 [6–20]	0.003
Number of VAP episodes					
Median (IQR)		1 [0-1]	1 [0-1]	1 [1-2]	0.007
0		116 (48)	112 (51)	4 (18)	0.01
1		66 (27)	56 (26)	10 (45)	
2		40 (17)	35 (16)	5 (23)	
3		19 (8)	16 (7)	3 (14)	
Dexamethasone		415 (83)	392 (83)	23 (82)	0.9
Tocilizumab		165 (33)	156 (33)	9 (33)	0.9
Monoclonal antibodies		74 (15)	67 (14)	7 (25)	0.1
Day-28 mortality		161 (29)	151 (29)	10 (34)	0.5
Duration of ICU stay, days	522/29	9 [4–18]	8 [4–17]	28 [16-44]	< 0.0001

Results are N (%), means (± standard deviation) or medians (interquartile range, i.e., quartile 1; quartile 3)

CAPA COVID-19-associated pulmonary aspergillosis, MV mechanical ventilation, ECMO extracorporeal membrane oxygenation, VAP ventilator-acquired pneumonia, IMV invasive mechanical ventilation

Two-tailed *p*-values come from unadjusted comparisons using Chi-square or Fisher's exact tests for categorical variables, and *t*-tests or Mann–Whitney tests for continuous variables, as appropriate. No adjustment for multiple comparisons was performed. Bolded p-values are significant at the p < 0.05 level

^a Numbers of non-CAPA/CAPA patients data available

^b VAP episodes were recorded per definition in patients under IMV since more than 48 h

day-28 mortality rates. WHO World Health Organization, SOFA Sequential Organ Failure Assessment, SAPS II Simplifed Acute Physiology Score II, MV mechanical ventilation

Correct legend of Fig. 3:

Fig. 3 Unsupervised analysis of the clinical and biological characteristics of the 566 critically-ill COVID-19 patients by self-organized maps (SOMs). Unsupervised analysis by SOM automatically located patients with similar clinical and paraclinical parameters within 1 of 40 small groupings ("districts") throughout the map. The more similar the patients, the closer on the map. Each individual map shows the mean values or proportions per district for each characteristic: blue indicates the lowest average values, red the highest, with numbers shown for a selection of representative districts in each SOM. For instance, immunosuppressed patients were more frequently located in the upper districts and also had higher serum urea levels, less frequent Delta variant infection, higher SAPS II and SOFA scores and day-28 mortality rates. WHO World Health Organization, SOFA Sequential Organ Failure Assessment, SAPS II Simplified Acute Physiology Score II, MV mechanical ventilation

The original article has been corrected.

Author details

¹Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Henri Mondor, 51, Av. de Lattre de Tassigny, CEDEX, 94010 Créteil, France.²Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France. ³Université Paris-Est-Créteil (UPEC), Créteil, France. ⁴IMRB INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France. ⁵IMRB INSERM U955, Team CEpiA, Créteil, France. ⁶Unité de Recherche Clinique, Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France. ⁷U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France. ⁸Service de Virologie, CHU de Lille, 59000 Lille, France. ⁹Médecine Intensive Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France.¹⁰Laboratoire de Virologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France. ¹¹Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Le Kremlin-Bicêtre, France.¹²Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France. ¹³Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris, Villejuif, France.¹⁴Centre de Recherche Saint-Antoine INSERM, Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France. ¹⁵INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France.¹⁶Laboratoire de Virologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France. ¹⁷Service de Réanimation Polyvalente, Hôpital Marc Jacquet, Melun, France.¹⁸Laboratoire de Microbiologie, Hôpital Marc Jacquet, Melun, France.¹⁹Service de Réanimation Médico-Chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Boulogne, France.²⁰Service de Réanimation, Hôpital Victor Dupouy, Argenteuil, France.²¹Service de Virologie, Hôpital Victor Dupouy, Argenteuil, France.²²Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France.²³Inserm HIPI, Université Paris Cité, 75010 Paris, France, ²⁴Laboratoire de Virologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France. ²⁵DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, APHP, Hôpital Louis Mourier, Colombes, France. ²⁶IN-SERM U1151, CNRS UMR 8253, Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), Paris, France. ²⁷IAME INSERM UMR 1137, Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France. ²⁸Service de Réanimation, Hôpital Saint-Camille, Bry-Sur-Marne, France.²⁹Laboratoire de Biologie, Hôpital Saint-Camille, Bry-Sur-Marne, France. ³⁰Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Réanimation Médicale, Sorbonne Université, Paris, France. ³¹Service de Virologie, CHU de Bordeaux et CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France.³²Département de Virologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ³³Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Médecine Intensive Réanimation, Sorbonne Université, Paris, France. ³⁴CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Université de Lorraine, Vandœuvre-Lès-Nancy, France. ³⁵INSERM U942 and U1116, F-CRIN-INIC RCT, Vandœuvre-Lès-Nancy, France. ³⁶Service de Virologie, CHRU de Nancy, Vandœuvre-Lès-Nancy, France. ³⁷Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France. ³⁸Laboratoire de Virologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France. ³⁹Service de Réanimation,

Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France. ⁴⁰Laboratoire de Virologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France.⁴¹Intensive Care Unit, Tours University Hospital, Research Center for Respiratory Diseases (CEPR), INSERM U1100, University of Tours, Tours, France. ⁴²INSERM U1259, Université de Tours, Tours, France. ⁴³CHRU de Tours, National Reference Center for HIV-Associated Labora tory, Tours, France.⁴⁴Service de Médecine Intensive-Réanimation, CHU De Rouen, Rouen, France.⁴⁵INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Virology, Univ Rouen Normandie, Université de Caen Normandie, 76000 Rouen, France. ⁴⁶Réanimation Polyvalente, INSERM CIC 1435 and UMR 1092, CHU Limoges, Limoges, France.⁴⁷French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, CHU Limoges, 87000 Limoges, France. ⁴⁸INSERM, RESINFIT, U1092, 87000, Limoges, France. ⁴⁹CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France. ⁵⁰Laboratoire de Virologie, CHU Rennes, 35000 Rennes, France. ⁵¹Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) UMR S 1085, Univ Rennes, 35000 Rennes, France. ⁵²Service de Médecine Intensive et Réanimation, CHU Clermont-Ferrand, Clermont-Ferrand, France. 533IHP, Service de Virologie, CHU Clermont-Ferrand, Clermont-Ferrand, France. ⁵⁴Département d'Anesthésie Réanimations Chirurgicales, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France. 55 Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France. Published online: 14 June 2024

Reference

 Bay P, Audureau E, Preau S, Favory R, Guigon A, Heming N, Gault E, Pham T, Chaghouri A, Turpin M, Morand-Joubert L, Jochmans S, Pitsch A, Meireles S, Contou D, Henry A, Joseph A, Chaix M-L, Uhel F, Roux D, Descamps D, Emery M, Garcia-Sanchez C, Levy D, Burrel S, Mayaux J, Kimmoun A, Hartard C, Pene F, Rozenberg F, Gaudry S, Brichler S, Guillon A, Handala L, Tamion F, Moisan A, Daix T, Hantz S, Delamaire F, Thibault V, Souweine B, Henquell C, Picard L, Botterel F, Rodriguez C, Dessap AM, Pawlotsky J-M, Fourati S, de Prost N, On behalf of the SEVARVIR investigators. COVID-19 associated pulmonary aspergillosis in critically-ill patients: a prospective multicenter study in the era of Delta and Omicron variants. Ann Intensive Care. 2024;14:65. https://doi.org/10.1186/s13613-024-01296-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.