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Abstract 

Prognosis determines major decisions regarding treatment for critically ill patients. Statistical models have been 
developed to predict the probability of survival and other outcomes of intensive care. Although they were trained 
on the characteristics of large patient cohorts, they often do not represent very old patients (age ≥ 80 years) appropri-
ately. Moreover, the heterogeneity within this particular group impairs the utility of statistical predictions for informing 
decision-making in very old individuals. In addition to these methodological problems, the diversity of cultural atti-
tudes, available resources as well as variations of legal and professional norms limit the generalisability of prediction 
models, especially in patients with complex multi-morbidity and pre-existing functional impairments. Thus, current 
approaches to prognosticating outcomes in very old patients are imperfect and can generate substantial uncer-
tainty about optimal trajectories of critical care in the individual. This article presents the state of the art and new 
approaches to predicting outcomes of intensive care for these patients. Special emphasis has been given to the 
integration of predictions into the decision-making for individual patients. This requires quantification of prognostic 
uncertainty and a careful alignment of decisions with the preferences of patients, who might prioritise functional out-
comes over survival. Since the performance of outcome predictions for the individual patient may improve over time, 
time-limited trials in intensive care may be an appropriate way to increase the confidence in decisions about life-
sustaining treatment.

Keywords  Intensive care, Critical care, Prediction, Very old patients

*Correspondence:
Christian Jung
christian.jung@med.uni-duesseldorf.de
1 Department of Medical Intensive Care, Hadassah Medical Center 
and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
2 Unidade Local de Saúde São José, Hospital de São José, Lisbon, Portugal
3 Centro Clínico Académico de Lisboa, Lisbon, Portugal
4 Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, 
Portugal
5 Center for Intensive Care and Perioperative Medicine, Jagiellonian 
University Medical College, Krakow, Poland
6 Institute for Medical Biomathematics, Bene Ataroth, Israel
7 Imperial College Business School, London, UK
8 Department of Research and Development, Haukeland University 
Hospital, Bergen, Norway
9 INSERM, Institut Pierre Louis d’Epidémiologie Et de Santé Publique, 
AP‑HP, Hôpital Saint Antoine, Sorbonne Université, Service MIR, Paris, 
France
10 Department of Intensive Care Medicine, University Medical Center, 
University Utrecht, Utrecht, The Netherlands

11 General Intensive Care, St George’s University Hospitals NHS 
Foundation Trust, London, UK
12 General Intensive Care Unit, Department of Anaesthesiology, Critical 
Care and Pain Medicine, Faculty of Medicine, Hebrew University and, 
Hadassah University Medical Center, Jerusalem, Israel
13 School of Computer Science and Engineering and Center 
for Computational Medicine, The Hebrew University of Jerusalem, 
Jerusalem, Israel
14 Department of Cardiology, Pulmonology and Vascular Medicine, 
Faculty of Medicine, Heinrich-Heine-University, University Duesseldorf, 
Moorenstraße 5, 40225 Düsseldorf, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13613-024-01330-1&domain=pdf
http://orcid.org/0000-0001-8325-250X


Page 2 of 12Beil et al. Annals of Intensive Care           (2024) 14:97 

Introduction
Identifying the patients with critical illnesses who will 
benefit from intensive care remains a challenge. Human 
judgement is imperfect [1, 2] and mistakes are made-
either by withholding or withdrawing intensive care in 
patients who might benefit from life-sustaining treatment 
(LST) or by exposing others to non-beneficial interven-
tions. This problem is documented by the survival rates 
in patients with conditions deemed as unsurvivable and 
the variability of decisions to withdraw LST, resulting in 
ethical controversies [3–5]. Statistical models have been 
developed with empirical datasets to assist clinicians 
with prognostication to varying degrees of success [6]. 
These shortcomings are reflected by the growing interest 
in time-limited trials in the intensive care unit (ICU) to 
manage prognostic uncertainty in the individual patient 
[7].

Very old patients (chronological age ≥ 80  years) pose 
a particularly challenging problem for prognostication 
[8–11]. The age-related decline of physiological and cog-
nitive reserves proceeds at different rates [12]. Its effect 
on the presentation and severity of acute disorders is sig-
nificant but hard to measure [13]. Chronic co-morbidi-
ties and multi-morbidity, which are highly prevalent in 
old age, and the reduced resilience to acute stress (frailty) 
may influence the trajectory of critical conditions in 
various ways, before admission, during the stay in ICU 
and after discharge [14, 15]. The resulting heterogeneity 
within the group of very old patients compromises the 
performance of the current armamentarium for prognos-
ticating the outcomes of intensive care [16, 17].

Whereas surviving a critical illness is the most crucial 
goal in younger patients, many very old patients value 
functional abilities and quality of life after discharge 
more than physical survival. Thus, younger and older 
individuals’ views and expectations about intensive care 
may differ. Since the use of advanced directives is limited 
in many countries and the performance of tools for prog-
nostications in these domains remains suboptimal [18], 
the ultimate prediction of ICU outcomes and the align-
ment of the subsequent decisions about LST with the 
patient’s preferences are mostly left to the discretion of 
healthcare professionals or surrogate decision-makers. 
Their cultural and individual preferences can lead to sub-
stantial biases and misalignments of decisions regarding 
the patients’ wishes [19–22]. As a result, societal norms 
may become self-fulfilling prophecies for ICU outcomes, 
which might be perpetuated in future prediction models 
trained on today’s data.

Poor prognostication can eventually lead to inappro-
priate care for the individual patient and inefficient uti-
lisation of ICU assets [23–25]. Substantial resources are 
being invested to improve predictive modelling and, 

hence, decision-making about the level of LST that is 
best for the individual [26–28]. This article will discuss 
both classical and new approaches addressing these 
challenges.

Predictive modelling
The classical approach to building instruments for pre-
dicting (prognosticating) future events or states (out-
come), such as survival or functional independence at a 
specific time, is fitting regression models to distributions 
of patient characteristics before these events, such as 
the severity of the critical condition, and the outcome of 
interest. Logistic regression is used when the outcome is 
dichotomous, such as survival vs non-survival.

There are only a small number of studies which 
focused on predictive modelling in ICU patients aged 
80  years or older. Screening of Pubmed (www.​pubmed.​
gov) for articles with a special emphasis on this particu-
lar cohort using the query “(older[ti] OR “very old”[ti] 
OR “oldest old”[ti] OR elderly[ti]) AND patient* AND 
(“intensive care” OR “critical care”) AND (outcome* OR 
survival OR mortality) AND (prognos* OR predict*) 
AND model*” identified five original studies published in 
the past 10  years [29–33], after the exclusion of studies 
using databases and those involving disease-specific sub-
groups or published by our own group.

The performance of predictive models is assessed by 
quantifying calibration and discrimination in differ-
ent cohorts. Calibration is the measure of the statistical 
agreement of model predictions with observed outcomes. 
For example, if 80 out of 100 patients survive in a par-
ticular group, a perfectly calibrated model generates a 
mortality prediction of 80% for that group. Figure 1 dem-
onstrates this relationship as a calibration plot for the 
hospital outcome cohort of the Simplified Acute Physiol-
ogy Score (SAPS) 3 study which included 16 784 patients 
from 303 ICUs around the globe [34, 35]. Figure 2 illus-
trates the effect of age on calibration in a simple mortality 
model using the severity of organ dysfunction to predict 
ICU survival. A cohort of 24 489 adult patients with 
available sequential organ failure assessment (SOFA) 
scores was extracted from the eICU database [37]. ICU 
mortality was calculated for each SOFA score value in the 
younger training cohort and compared to that observed 
in a cohort of 5252 patients aged 80 years or older using 
the software R (version 4.1.1, www.r-​proje​ct.​org). The 
models trained on younger cohorts underestimate mor-
tality for very old patients across parts or the whole of the 
spectrum of predictions (Fig.  2). Since there is no gold 
standard to evaluate calibration [38], the degree of mis-
calibration deemed acceptable is, to some degree, sub-
jective and context-dependent. Clinicians should check 

http://www.pubmed.gov
http://www.pubmed.gov
http://www.r-project.org
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whether the prediction model is well calibrated for the 
particular case-mix in their ICU.

Discrimination describes the model’s ability to differen-
tiate between groups of patients with distinct outcomes. 
This concept is crucial for assessing the merit of models 
in clinical practice, when outcomes are fundamentally 
different, such as survival and non-survival, and decisions 
are irreversible. Overall discrimination can be measured 
using the area under the curve of the receiver operating 
characteristic (AUC-ROC), which relates the sensitiv-
ity and specificity of a dichotomous prediction model. It 
ranges from 0.5, indicating discrimination no better than 
the random results after tossing a coin, to 1.0 for perfect 
discrimination. An AUC-ROC value of 0.9 implies that 
in 90% of the cases, the model correctly ranks a patient 
with a particular event, such as survival, higher than the 
one without. Figure 3 depicts AUC-ROCs for simulated 
distributions of ICU survivors and non-survivors having 
variable degrees of pre-existing frailty [39]. The values for 
these AUC-ROCs range from 0.69, which represents sub-
optimal discrimination, to 0.9 which indicates very good 
discrimination. Despite good AUC-ROC values though, 
there can be a marked overlap of the distributions as 
illustrated by the simulated examples in Fig. 3. This com-
plicates prognostication for those patients with a degree 
of frailty that is contained within the overlap. Thus, the 
discrimination of a predictive model should also be 

verified for the range of values that is relevant to a par-
ticular patient group.

The generalisability of prediction models refers to their 
performance in patient groups or healthcare settings 
other than the one used for training. Variations of patient 
biographies according to geography and era as well as dif-
ferences in cultural norms and practice patterns affect 
care processes and outcomes [4, 42–44], especially in 
very old patients with complex conditions. Thus, the 
generalisability of many prediction models is limited [45, 
46] and the performance of these models was shown to 
degrade when deployed in different healthcare settings or 
during different periods in time [47, 48].

Disease severity scores
Disease severity scores, such as the Acute Physiology and 
Chronic Health Evaluation (APACHE) score or the Sim-
plified Acute Physiology Score (SAPS), were developed 
to predict survival at discharge from the hospital. The 
underlying models are based on three types of variables: 
(1) chronological age and chronic health status includ-
ing co-morbidities, (2) circumstances of ICU admission, 
e.g. elective vs acute, and admission diagnosis and (3) 
markers of organ dysfunction observed at admission to 
the ICU or within 24 h thereafter. A significant increase 
in the risk of death in patients older than 40  years in 
comparison to younger cohorts, even when controlling 
for other demographic and physiological variables, was 
observed while developing disease severity scores [34]. 
This is reflected by the points assigned to different age 
groups for the SAPS 3 score (Fig. 4).

In addition to scoring disease severity with data 
obtained at a single point in time, this method can also be 
applied in a dynamic way that includes the physiological 
response to interventions assessed at regular intervals in 
the ICU [49]. This approach has demonstrated the poten-
tial to outperform conventional scores with respect to the 
discrimination of survivors vs non-survivors [50]. Daily 
recordings of the SOFA score [51] allow the computa-
tion of time-dependent measures, such as the delta SOFA 
score, which quantifies the evolution of the critical illness 
in response to interventions and can improve outcome 
predictions [52].

Chronic conditions and impairments, which deter-
mine the health status in most very old patients, are 
established predictors of ICU survival [53, 54]. They 
were shown to have an increasing statistical impact on 
in-hospital mortality the longer patients are in inten-
sive care [55] and a profound influence on survival at 
6  months in very old patients [29]. However, frequent 
geriatric conditions, such as neurocognitive disorders, 
are still not taken into account by the classical disease 
severity scores. Moreover, the chronic health status in 

Fig. 1  Calibration belt for 16 784 patients from the SAPS 3 database 
[34, 35] describing the relationship between predicted and observed 
hospital mortality, which is depicted as the fraction of non-survivors. 
The plot was generated using the R package givitiR [36]. The overlay 
between the identity function (red line) and the calibration belt 
with narrow confidence intervals (shaded areas-see inset) indicates 
a good agreement between model predictions based on the SAPS 
3 score and observed outcomes for most of the range of hospital 
mortality
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very old patients should ideally be evaluated by a com-
prehensive geriatric assessment to capture the distinct 
risk profile in the individual [56, 57]. This includes addi-
tional dimensions, such as socio-economic features, 
which were shown to affect outcomes of critical condi-
tions in this group [58]. Due to the time constraints in 
managing critically ill patients, this approach may only 
be feasible in the workup for planned ICU admissions 
in the context of elective surgery. However, it would be 
important to adapt fundamental aspects of a geriatric 
assessment to emergency care in the ICU as recently 
outlined by Jacobs et al. [59].

The overall contribution of chronic conditions and 
chronological age to the prediction of survival with 
disease severity scores increased in the past decades 
[35]. In contrast, the explanatory power of markers 
of acute organ dysfunction is decreasing. This can be 
related to the progress of intensive care in managing 
acute organ dysfunction. Yet, the ability to deal with the 
consequences of chronic conditions and impairments 
which progress with ageing and declining physiologi-
cal reserves, including reduced cardiovascular fitness, 
immunosenescence and the impact of degenerative 
diseases, is still very limited. Importantly, the perfor-
mance of disease severity scores is affected by ongo-
ing demographic shifts, with today’s very old patients 
not being adequately represented in historical samples 
for training models, and the fact that some conditions, 
which were imminently fatal in the past, are now man-
aged as chronic conditions over an extended period. On 
this background, the discriminatory performance of the 
APACHE IV and SAPS II scores was found to be worse 
for very old patients [16, 60]. In addition to the above 
issues, the APACHE score requires choosing a princi-
pal admission diagnosis, which can lead to ambiguity in 
older patients with complex multimorbidity and further 
impair the model’s performance.

There is an ongoing discussion about replacing chron-
ologic age with biological age to enhance the predictive 

Fig. 2  Illustration of the impact of chronological age 
on the calibration of prediction models. ICU mortality is depicted 
as the fraction of non-survivors and was predicted based on SOFA 
scores in patients from the eICU database [37]. The plots were 
generated using the R package givitiR [36]. The shaded regions 
depict calibration belts for various confidence levels (see inset). 
Panels A–C show the calibration characteristics for models trained 
on patients younger than the indicated threshold [A: ≤ 60 years (n = 7 
928), B: ≤ 70 years (n = 13 612), C: ≤ 80 years (n = 19 237)] and applied 
to patients aged 80 years or older (n = 5 252). The extent and shape 
of the calibration belts’ deviation from perfect calibration (red line) 
depend on the age gap between the training and deployment 
samples

◂
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accuracy of disease severity scores in very old patients 
[61]. However, this requires a robust definition of biologi-
cal age. Even if such a definition would focus on frailty as 
a marker of age-related vulnerability to stress [13], a com-
prehensive assessment of the individual patient beyound 
a simple screening might be necessary to produce a relia-
ble and meaningful impact on the performance of predic-
tion models. Similar considerations may apply to other 
geriatric conditions, notably multimorbidity [62]. Some 
studies have already combined measures of acute organ 
dysfunction with frailty screening and showed promis-
ing results for the predictive discrimination of short-term 
survival in sub-groups of very old ICU patients [63, 64]. 
In particular, phenotyping of patients 80  years or older 
based on a combination of SOFA scores and the clini-
cal frailty scale (CFS) at ICU admission resulted in seven 
distinct sub-groups with different mortality at 30  days, 
ranging from 3 to 57%. Importantly, the phenotype rep-
resenting mostly nonagenarians with a median CFS level 
of 4 (very mild frailty) and a median SOFA score of 4 had 
a mortality of only 7% at 30 days after ICU admission, in 
contrast to less old patients with more advanced frailty 
and similar SOFA scores [64].

Prediction of functional outcome and quality of life
Survival is an essential milestone of intensive care. How-
ever, recovering the pre-existing level of independence 
in daily life and self-perceived quality of life are other 
major goals [65]. They are especially important for very 
old ICU survivors with frailty, which confers an increased 
vulnerability to stress with potentially long-term sequelae 
for functional abilities. Few studies attempted to predict 
functional outcomes or quality of life for old individu-
als, since such investigations usually involve comprehen-
sive assessments by geriatric teams [57]. Ferrante et  al. 
[66] used age, frailty, pre-existing disabilities, depressive 
symptoms, previous hospitalisations and hospital length 
of stay to predict persistent functional impairment in 
the year after discharge from the ICU, though with only 
moderate discrimination (AUC-ROC 0.71). In another 
study, severe limitations of health-related quality of life 
were found in half of the patients with COVID-19, who 

were 70 years and older, three months after ICU admis-
sion and to be associated with pre-existing frailty [67]. 
However, the generalisability of this particular finding 
might be limited by the admission biases caused by the 
constraints on ICU resources during the COVID-19 pan-
demic [68].

According to an international expert consensus, pre-
dicting functional outcomes and quality of life is generally 
compromised by obstacles to quantifying these measures 
robustly [69]. Future instruments to assess the quality 
of life in a very old person should consider the specific 
expectations and priorities in this age group, which may 
differ significantly from those in younger cohorts. There 
also is a broad spectrum of contextual confounders, rang-
ing from individual preferences of decision-makers to 
access to healthcare services, which may influence these 
functional outcomes [21]. Moreover, patients’ attitudes 
are known to fluctuate over time [70]. Therefore, the per-
formance of current methods for predicting outcomes in 
the above domains does not appear to be robust enough 
for determining major decisions about LST.

New machine learning technologies
The number of patient characteristics found to correlate 
with outcomes of intensive care continues to rise, nota-
bly when considering the large set of features which can 
be provided by geriatric assessments [56] or dynamic 
predictions in the ICU [49]. The resulting expansion of 
patients’ datasets in size and dimensionality constitutes a 
formidable challenge for predictive modelling [71]. New 
technologies in machine learning (ML) were designed to 
process large datasets to identify relationships between 
multiple variables describing patients, context and care 
processes. Until recently, most of these technologies were 
based on scaling-up classical methodologies, such as 
logistic regression in artificial neural networks or deci-
sion trees in random forests.

The quality and granularity of data for training remains 
pivotal for the performance of models, even when using 
’big data’ [26]. This concerns noise in recordings of physi-
ological and biochemical variables, incorrect documenta-
tion of interventions and the omission of decisions about 

Fig. 3  Illustration of discrimination of prediction models for simulated distributions of survival for various degrees of frailty, which was measured 
with the Clinical Frailty Scale (CFS) [39]. Percentages of ICU survivors and non-survivors per CFS category are depicted by light and dark bars, 
respectively, on the left side. The corresponding receiver operating characteristic (ROC) curves for survival predictions and the area under these 
curves (AUC-ROC) were obtained using the R package pROC [40] and are shown on the right side. Panel A depicts distributions of ICU survivors 
and non-survivors using information from the VIP2 study about the percentages in each CFS category [41]. Overall discrimination between the two 
outcomes (AUC-ROC = 0.69) is sub-optimal. Panel B shows a hypothetical scenario with a linear relationship between frailty (CFS) and ICU mortality. 
Despite the good AUC-ROC of 0.8, there is maximum uncertainty, i.e. a 50% chance of survival, for patients with CFS 5 (mild frailty). Panel C presents 
another hypothetical scenario resulting in an AUC-ROC of 0.9 which indicates a very good discrimination for the prediction model. However, 
the overlap at CFS 4 (very mild frailty) leads to substantial prognostic uncertainty for the patients in this particular frailty category

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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LST [20]. Moreover, cultural and professional norms, 
such as local policies of limiting LST, influence outcome 
and are implicitly integrated in historical datasets. They 
may affect the generalisability of prediction models if 
their association with outcome remains undetected dur-
ing the development and deployment of these models.

New and more sophisticated types of neural networks 
(transformers) were developed by enhancing the intercon-
nections between their sub-units to detect more complex 
patterns in data [72, 73]. This technology is evolving rap-
idly, and we would like to refer the interested reader to 
the latest literature in this domain. Foundation models, 
often known as large language models, are based on the 
transformer architecture and represent today’s frontier in 
ML technologies and artificial intelligence [74]. Factuality 
and adversarial safety of these models have been a prob-
lem but can be improved by adding verification with data 
from trusted sources [75–77]. The versatility of foundation 
models has been illustrated by the performance of mod-
els processing a broad spectrum of knowledge in different 
domains and, importantly, showing reasoning capabilities 
[78]. These capabilities appear to be an emergent feature 
of very large models and may eventually enhance the gen-
eralisability of the embedded information [79]. Smaller 
models can be effectively trained by focussing on domain-
specific data, such as clinical patient notes [28]. This data 
source also contains information about professional norms 
and care processes, which is usually not included in classi-
cal prediction models. A large hospital system has applied 
this new technology to generate outcome predictions for 
an unselected cohort of almost 400 000 patients admitted 
to hospital during the period 2011 to 2020 [28]. Although 
discrimination for in-hospital mortality was excellent 

(AUC-ROC 0.95), it remains to be seen if this performance 
level can be replicated with respect to the characteristics 
and outcomes in very old patients.

Although numerous ML models have been developed 
for outcome predictions in intensive care for unselected 
patient populations or disease-specific sub-groups [80], 
there is a scarcity of ML models designed for prognostica-
tion in very old patients using the specific set of geriatric 
characteristics in this cohort [57]. In the one study pub-
lished in this field, an augmented version of decision tree 
analysis was employed to provide survival predictions 
based on six categories of variables, including demographic 
and acute patient characteristics as well as features of frailty 
and multi-morbidity. The resulting model showed only a 
slightly better discrimination than classical disease severity 
scores, such as SAPS II and APACHE IV, for patients older 
than 65 years [17]. However, sub-group analyses revealed 
a decreased discrimination for in-hospital mortality in 
patients older than 80  years, which confirms findings in 
previous studies using conventional methods [16].

We have previously discussed the benefits and pitfalls 
of ML technologies and the related uncertainties about 
predictions from an ethics point of view [81]. The recent 
advent of large foundation models has only heightened 
the concerns underlined in that article. This especially 
applies to the selection of unbiased datasets for training, 
e.g. by assessing the incidence of decisions to limit LST 
which is expected to be very variable [25], and the frame-
work for an oversight of algorithms to detect inappropri-
ate outputs [75]. Moreover, the importance of transparency 
and explainability of ML models in defining their utility in 
clinical practice remains a matter of debate [82]. Methods 
which estimate the effect of a specific patient characteristic 
on outcome predictions can provide a solution for the issue 
of transparency [83]. Yet, the size of the effect of a variable 
on the model’s output does not explain the parameter’s 
specific biological role, which would be useful for causal 
reasoning.

From outcome predictions to decisions‑the 
challenge of uncertainty
Current prediction models are designed to generate a 
probability for a specific outcome derived from the statis-
tical properties of training cohorts. The resulting number, 
however, can only be integrated into the decision-making 
for individual patients with additional considerations. 
First, decision-makers have to verify that a prediction 
model is applicable within the specific context of the case 
since variations of care processes between healthcare set-
tings may substantially alter the calibration and discrimi-
nation of models [47]. In particular, recommendations 
for specific cut-offs with respect to major decisions about 
LST should be scrutinised for unwanted consequences 

Fig. 4  Impact of chronological age on the SAPS 3 score. The 
plot shows the points added to the score for patients in specific 
age categories. Patients aged 70 years or older get more points 
for their chronological age than younger patients would receive 
for a diagnosis of cirrhosis or cancer, which would add 8 or 11 points, 
respectively
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[84]. Second, even if the patient and context variables 
matched the training cohort, the probabilistic nature of 
model predictions requires dichotomisation of the model 
output into categories of actionable decisions when, 
for example, contemplating withholding or withdraw-
ing LST in the individual patient. This process necessi-
tates an understanding of the uncertainty regarding both 
the predictions of the model in general and the specific 
risk given for an individual patient [85, 86]. Uncertainty 
can be quantified using the concept of entropy [87] and 
monitored over time to understand how the confidence 
in outcome predictions evolves during critical care [88]. 
This might be particularly relevant to the cohort of older 
patients due to their inter-individual heterogeneity, 
which results in a high degree of uncertainty in statistical 
predictions when provided only at a single point in time.

Prognostication is a prelude to decision-making in 
intensive care. Decisions should be based on an objective 
description of the critical condition to be fair and robust. 
They should also be aligned with the patient’s individual 
preferences which is especially relevant to individuals 
with complex co-morbidities [89, 90]. However, discuss-
ing predictions about likely outcomes with patients or 
surrogates can be challenging. This step benefits from 
suitable communication skills to translate numerical 
data, i.e. probabilities, into information that can be pro-
cessed by lay people during decision-making. The finding 
that better numeracy in patients is associated with better 
outcome [91] indicates the need to further improve these 
skills among healthcare professionals.

The impact of predictive uncertainty on the decision-
making in clinical practice has been acknowledged by 
clinicians as well as professional institutions [9, 92]. 
A time-limited trial (TLT) in the ICU can be a suit-
able intervention if the uncertainty about the predicted 
outcome is uncomfortably high. A TLT is a collabora-
tive plan among clinicians and the patient or surrogate 
decision makers to use LST for a defined duration, after 
which the patient’s response to this treatment informs 
the decision to continue or withdraw LST [7]. On this 
background, a TLT provides the opportunity to gather 
additional information, notably about the patient’s 
response to interventions [93], which can enhance the 
accuracy of prognostication [50]. However, a TLT may 
also result in increased uncertainty about survival, e.g. 
when new data obtained after stabilisation of organ func-
tion makes the predicted mortality drop from 80 to 50%, 
which represents the peak of uncertainty. These situa-
tions require a careful and comprehensive assessment as 
well as discussions with other stakeholders about indi-
vidual goals of care and, thereby, the individual objective 
for prognostication [94]. Especially in very old patients, 
the predicted benefit of intensive care has to be weighed 

against its physiological and psychological burden in the 
context of an enhanced vulnerability to stress (frailty). 
Shared decision-making [89] may also include reflections 
on the impact of a potentially suboptimal outcome on the 
wellbeing of caregivers, when assessed from the patient’s 
perspective.

Discussion
The prediction of outcomes for the individual patient 
determines major decisions along the pathway of criti-
cal care [11]. This concerns decisions about admission to 
the ICU as well as those about continuation, escalation or 
withdrawal of LST in the ICU. Whereas prognostication 
at the point of a potential ICU admission is usually based 
on a fixed amount of information and made under time 
constraints, decision-making in the ICU can benefit from 
flexibility in the extent of time available for collecting 
more data and improve prognostication for the individ-
ual patient. Considering time as an additional dimension 
in predictive modelling, however, requires more sophis-
ticated methods than those currently used in clinical 
practice.

When statistical models are employed for the purpose 
of prognostication, particular attention needs to be paid 
to the calibration and discrimination of these models in 
a specific healthcare setting. These factors are influenced 
by the generalisability of a model’s underlying assump-
tions and contextual parameters, such as cultural norms 
for limiting LST or the availability of early rehabilitation 
for ICU patients [59]. Failure to acknowledge these issues 
may lead to faulty predictions and inappropriate care.

Additional assessments and reflections are necessary to 
integrate model-based predictions into robust decision-
making about critical care. Reflections about prognostic 
uncertainty should go beyond a simple acknowledgement 
[9] and extend to quantification [85, 95]. Understanding 
the degree of the uncertainty of predictions is particularly 
relevant to dichotomous and irreversible decisions about 
LST. However, it remains to be determined what specific 
degree of uncertainty might be acceptable when translat-
ing model predictions into actions [92]. Additional steps 
might be necessary to manage situations of enhanced 
uncertainty. These include obtaining second opinions 
from experts outside the ICU team, such as from geri-
atricians, and engaging in a robust communication with 
patients or surrogate decision-makers.

The problem of the uncertainty of initial prognos-
tic assessments can be mitigated by adding information 
about the patient’s response to treatment over time [7]. 
This approach is of particular value for the cohort of very 
old patients with a high prevalence of various degrees of 
frailty, which confers an increased but poorly predictable 
vulnerability to the stress caused by critical conditions. 
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Analysing time-dependent (dynamic) scores for organ 
failure and disease severity is a promising approach to 
enhance predictive accuracy. As data acquisition and 
processing are becoming fully automated, dynamic meth-
ods for prognostication may be developed into efficient 
tools for decision support. However, the burden of care 
as perceived by the individual patient, which is influ-
enced by age-related conditions, has to be integrated into 
decisions about LST. Since there are no robust instru-
ments for quantifying symptoms in this domain, the 
decision-making still requires a prudent judgment by the 
ICU team.

Conclusions
Current methods for predicting outcomes of intensive 
care are imperfect and require careful implementation, 
especially for very old patients with complex chronic 
health status and variable personal expectations. The 
additional consideration of geriatric and time-dependent 
patient characteristics and a better generalisability of pre-
diction models can further refine prognostication to sup-
port individualised decisions about LST in this patient 
cohort.

From our point of view, adjustments of the methods 
for prognostic modelling and their careful integration 
into the decision-making processes in the ICU may 
provide the opportunity for actionable prognostica-
tion in clinical practice (Table 1). The next generations 
of intensivists will have to acquire advanced knowledge 
about probabilistic reasoning to better understand the 
strengths and limitations of these technologies [96]. 
However, regardless of the refinement of data science 
technologies, the predictability of future events for the 
individual patient will remain limited due to the proba-
bilistic nature of these methods. Therefore, conversa-
tions about prognostic uncertainty with patients and 
families are a crucial component of decision-making 
before admission to the ICU or in the ICU [94]. The 
variable preferences and wishes of stakeholders have to 

be balanced with predicted outcomes and their uncer-
tainty when making decisions about LST [97]. In these 
situations, the trade of decision-making still remains an 
art.
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