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maintaining homeostasis requires regulating and syn-
chronizing multiple functions of different organs and 
systems through interorgan communication. Organ 
crosstalk is the intricate network of long-distance com-
munication between different organs, facilitated by cel-
lular pathways, solutes, neurohormonal actions, and 
extracellular vesicles (EVs) [2–4].

Sepsis is an uncontrolled immune response to an infec-
tion that causes organ dysfunction. Septic shock is a 
severe form of sepsis with significant circulatory, cellu-
lar, and metabolic dysfunction [5]. It is a common condi-
tion in intensive care units (ICUs) in which organ failure 
may progress to multiple organ dysfunction syndrome 
(MODS) and death [6]. One study reported that the 
occurrence rates of sepsis in the ICU ranged from 13.6 

Background
What is life? We can characterize life as any entity with 
the capacity for organization, metabolism, growth, 
reproduction, environmental adaptation, and response 
to stimuli [1]. The ability of a biological system to 
maintain internal balance in the face of external varia-
tions is defined as homeostasis. In complex organisms, 
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Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated 
organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular 
function. These mechanisms cooperate through multiple organs and systems according to a complex set of 
long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the 
concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms 
in other systems that can induce further damage. Despite the abundance of studies published on   organ crosstalk 
in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create 
a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 
10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. 
We explored these relationships in terms of the heart–kidney–lung, gut-microbiome–liver–brain, and adipose 
tissue–muscle–bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. 
We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical 
ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be 
carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome 
in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding 
and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the 
development of individualized therapeutic strategies.
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to 39.3%, with ICU and hospital mortality rates of 25.8% 
and 35.3%, respectively [7].

Sepsis-associated organ dysfunction involves disrup-
tion of organ crosstalk, but the mechanisms underly-
ing this process have not yet been fully elucidated [8]. 
Formulating a comprehensive framework involving the 
simultaneous communication mechanisms between all 
organs is necessary to create a more precise model for 
predicting organ dysfunction in sepsis patients.

Literature review of organ crosstalk in sepsis
We carried out a narrative review for articles in PubMed 
published between 2012 and 2023 with the keywords 
“organ crosstalk”, “interorgan communication”, “sepsis”, 
“shock” and “organ failure”. This time frame was chosen 
because many publications in this area have been pub-
lished more recently. Original and review articles were 
included. One major limitation of this review is bias in 
selecting articles, which may result in the exclusion of 
significant data.

The selected articles revealed significant work on the 
brain, respiratory, cardiovascular, renal, hepatic, and 
hematological systems. There has also been a substantial 
number of publications on other regulatory systems, par-
ticularly the gut-microbiome and adipose–muscle–bone 
systems, that play crucial roles in regulating metabolism 
and the inflammatory response to injury.

All systems in the body are deeply integrated, and 
any classification system is artificial and incompletely 
describes the full complexity of organ crosstalk. We 

first reviewed the inflammatory response and metabolic 
reprogramming in sepsis to facilitate the exposition of 
concepts. We then explored the impact of organ crosstalk 
in the following systems: heart-lung-kidney, gut-micro-
biome-liver-brain, and adipose-muscle-bone. We have 
categorized these sections based on our experience to 
enhance the coherence and flow of this review.

The inflammatory response and metabolic reprograming 
in sepsis
The inflammatory response in sepsis begins with an 
injury or insult (Fig.  1) that, through multiple mecha-
nisms, promotes the activation of inflammasomes in the 
innate immune system [9]. This results in a robust pro-
inflammatory response, with the release of interleukin-6 
(IL-6), tumor necrosis factor-alpha (TNF-α), and inter-
feron-gamma (IFN‐γ) and activation of the coagulation 
system [10–13].

This immune system activation requires metabolic 
reprogramming with a shift in metabolism from oxida-
tive phosphorylation (OXPHOS) toward a glycolytic phe-
notype as the main energy-producing pathway [14]. This 
results in reduced energy usage that may impact organ 
cell function, potentially contributing to organ failure 
and disrupting organ crosstalk [14]. Switching from gly-
colysis to OXPHOS is essential to restore normal organ 
function [15].

Adaptive immunity and counterregulatory mechanisms 
control the intensity and duration of the inflammatory 
response [16, 17]. Cortisol participates in regulating the 

Fig. 1 Inflammatory response and metabolic reprogramming in sepsis
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balance between hyperinflammation and immunosup-
pression [18], and patients with inadequate cellular 
corticosteroid activity due to the severity of the illness 
develop critical illness-related corticosteroid insuffi-
ciency (CIRCI) [19]. In a meta-analysis, it was suggested 
that corticosteroids may lower mortality rates in sepsis 
and septic shock [20].

If not regulated, the early hyperinflammatory phase 
may progress to an overwhelming inflammatory response 
characterized by refractory shock, MODS, and death 
[17]. Conversely, patients who survive the early hyperin-
flammatory phase may progress to a phenotype termed 
persistent inflammation, immunosuppression, and catab-
olism syndrome (PICS) [21]. This biphasic view oversim-
plifies a dynamic process that balances the extremes of 
hyperinflammation and immunosuppression [22]. The 
regulation of this delicate balance of the inflammatory 
response is thought to be strongly influenced by organ 
crosstalk.

Techniques such as high-volume hemofiltration, 
plasma adsorption, and hemoadsorption have been 
designed to target circulating inflammatory molecules in 
patients with sepsis and multiple organ dysfunction [23]. 
However, there is a lack of knowledge concerning the 

interaction between organ crosstalk and artificial organ 
support systems [23].

In conclusion, sepsis-induced injury triggers a pro-
found inflammatory response by recruiting different 
systems to counter infection. This response may come at 
the cost of injury to healthy tissues, which can ultimately 
compromise organ function. Several regulatory loops 
regulate the intensity and duration of the hyperinflam-
matory response so that organs can restore homeostasis. 
This balance may not be achieved in sepsis with sequen-
tial multiorgan failure. Injury to one organ may cause 
secondary damage or dysfunction in other organs by 
activating a vicious cycle and worsening MODS [24]. In 
the following sections, we explore how organ crosstalk is 
affected in sepsis.

Heart–lung–kidney crosstalk in sepsis
The cardiovascular system
The cardiovascular, respiratory, and renal systems are 
closely connected and mutually dependent (Fig.  2) [25, 
26]. Management of cardiovascular system dysfunction 
commonly focuses on regulating blood pressure and 
ensuring proper organ perfusion. While these are a core 
focus of intervention in ICU, inter-organ communication 
mechanisms also impact the response to sepsis.

Fig. 2 Heart-lung-kidney crosstalk in sepsis
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The early hyperinflammatory response affects the 
endothelial production of nitric oxide, prostacyclin, and 
inflammatory cytokines [27]. Refractory hypotension 
follows and is a hallmark of septic shock. Several neuro-
hormonal mechanisms, such as the renin-angiotensin-
aldosterone system (RAAS) and ß-adrenergic nervous 
system, become activated to maintain cardiac output in 
decompensated cardiovascular function [28]. A growing 
body of evidence indicates that the heart also acts as a 
sophisticated paracrine and endocrine organ, synthesiz-
ing and secreting proteins called cardiokines, which are 
involved in intercellular and interorgan communication 
[29–31]. More than 16 cardiokines have been identified, 
including atrial natriuretic factor (ANF), brain natriuretic 
peptide (BNP), transforming growth factor beta-1 (TGF-
β1), angiotensin II, and proinflammatory cytokines such 
as IL-6 [32] which is associated with a decrease in heart 
rate variability, a hallmark of autonomic dysfunction dur-
ing sepsis [33]. Cardiokines may significantly regulate 
communication between the cardiovascular system and 
other organs during sepsis.

The kidney
The establishment of a proinflammatory milieu in sepsis 
induces acute kidney injury (AKI) [34]. AKI is associated 
with modulation of the functioning of other vital organs 
via organ crosstalk [35–42]. The upregulation of TNF-α 
and IL-6, along with the increase in uremic molecules 
such as indoxyl sulfate, is important for mediating the 
effects of AKI on distant organs [37]. This can affect the 
heart, lungs, central nervous system, hematologic system, 
liver, gut, and microbiome [43].

AKI is associated with impaired lung function [25, 35, 
44]. On the other hand, the development of acute respira-
tory distress syndrome (ARDS) in sepsis may induce AKI 
[44]. Biotrauma linked to mechanical ventilation can also 
result in AKI [45].

In sepsis, the heart and kidney are commonly injured 
and affect each other through several mechanisms, 
including organ crosstalk, as exemplified by the cardiore-
nal syndrome (CRS) type 5 [25, 46]. AKI-induced volume 
overload, uremic toxin retention, and RAAS overactiva-
tion accelerate heart failure [47]. The accumulation of 
uremic toxins, metabolic acidosis, and electrolyte imbal-
ances leads to cardiovascular toxicity and can increase 
the risk of myocardial ischemia and life-threatening 
arrhythmias [39].

Renal replacement therapy (RRT) is frequently uti-
lized to provide essential renal support in treating sep-
tic patients in intensive care [48]. RRT effectively aids in 
controlling blood volume and reducing the concentration 
of uremic toxins, eventually helping to balance disturbed 
organ crosstalk, but more studies are needed about the 

interaction of these techniques and organ crosstalk 
current.

The lung
The development of ARDS, a syndrome of acute respira-
tory failure due to diffuse lung inflammation and edema 
not fully explained by cardiac failure or fluid overload 
[49], is common in sepsis, either as the result of infection 
or systemic inflammation. The inflammatory cascade ini-
tiated in the lungs propagates into circulation and can 
reach distal organs, thus playing a pivotal role in develop-
ing MODS [4, 49, 50].

The central nervous system may also regulate the 
inflammatory response in the lungs [51, 52]. The vagus 
nerve is involved in the cholinergic anti-inflammatory 
pathway (CAP) in the brain–lung axis, in which ace-
tylcholine (ACh) is released and acts on ACh receptors 
(α7nAChR) on immune cells and pulmonary neuroen-
docrine cells (PNECs). Proper activation promotes the 
regression of inflammation, but overreaction may aggra-
vate infection and even promote the occurrence of lung 
disease [52]. There is some preliminary experimental evi-
dence of CAP in humans. However, this literature has not 
been well integrated and critically evaluated [53].

Protective mechanical ventilation may be crucial for 
minimizing lung injury and secondary brain injury [51]. 
Several sedatives and analgesics may modulate the lung 
inflammatory response. Morphine inhibits the release 
of interleukin-17 (IL-17) in the respiratory epithelium, 
leading to delayed pathogen clearance and sustained 
inflammation [54]. Dexmedetomidine reduces the 
inflammatory response to injurious mechanical ventila-
tion by mitigating α2-adrenoceptor activation [55]. Pro-
pofol is also known to have neuroimmunomodulatory 
effects [51].

Extracorporeal techniques such as veno-venous extra-
corporeal membrane oxygenation (VV-ECMO) are com-
monly used to provide respiratory support for patients 
with severe lung disease due to sepsis. Patients on VV-
ECMO are at risk for AKI [56], but the impact of these 
techniques on organ crosstalk is largely unknown.

In conclusion, a pro-inflammatory environment in sep-
sis triggers a cascade of responses that impact cardiovas-
cular, kidney, and lung functions. The communication 
between these systems goes beyond organ perfusion, 
acid-base regulation, and gas exchange. It also involves 
various metabolites, such as cardiokines, inflammatory 
mediators, and uremic metabolites like indoxyl sulfate, 
which can act as carriers of information between organs. 
The dysregulation of this delicate system disrupts organ 
function in sepsis and promotes MODS.
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Gut–microbiome–liver–brain crosstalk in sepsis
The gut and the microbiome
The digestive system and the gut microbiome form a cru-
cial symbiotic relationship. The gut microbiota serves 
vital functions, including metabolizing non-digestible 
components of food, protecting the host from pathogenic 
invasion, and modulating the immune system [57].

In septic patients, the protective mechanisms that 
maintain the gut barrier may fail due to circulatory hypo-
perfusion, subsequent ischemia, inflammation injury of 
the enteric barrier, and neuroendocrine dysregulation 
(Fig. 3) [58, 59]. Sepsis-induced cytokines, such as IL-6, 
TNF-α, and interleukin-1β (IL-1β), can directly affect the 
gut barrier by affecting intestinal cell proliferation and 
apoptosis [60]. Sepsis also alters the symbiotic intestinal 
microenvironment into a dysbiotic medium that pro-
motes epithelial cell hyperpermeability and apoptosis, 
hyperinflammation, and the dominance of pathogenic 
bacteria [61]. This leads to enteric barrier dysfunction, 
which allows toxins and bacteria to cross into the lym-
phatic system [60]. The result is gastrointestinal failure, 
which coincides with clinical signs such as oral intoler-
ance, gastrointestinal hemorrhage, or ileus. It is also 
associated with lipopolysaccharides (LPS) endotoxemia, 
directly injuring the liver [60].

The gut microbiome plays a central role in regulating 
the inflammatory response in sepsis by releasing mul-
tiple mediators such as short-chain fatty acids (SCFAs 

– such as acetate, propionate, and butyrate), succinate, 
and serotonin, among many others [61–63]. In sepsis, 
the gut microbiome may be compromised, significantly 
decreasing microbial diversity, especially anaerobic spe-
cies, resulting in microbial dysbiosis, which can lead 
to inadequate immune functioning and inflammatory 
responses, affecting organ crosstalk resulting in other 
organ dysfunction [57, 64, 65]. There is a strong connec-
tion between the gut microbiome and liver dysfunction 
in sepsis [66].

The shift from a healthy microbiome to a pathobiome 
in septic patients may also be driven by antibiotics and 
intensive care-specific treatments such as artificial feed-
ing, mechanical ventilation, proton pump inhibitors 
(PPIs), vasopressors, and opioids [59]. Most ICU patients 
receive antibiotics, which deplete commensal gut bac-
teria, enrich opportunistic pathogens, and disturb the 
immune response and physiological activity, influencing 
other organ functions [61]. Even with short-term anti-
biotic administration, gut microbiome perturbation can 
persist for months [66]. The frequent use of PPIs in hos-
pitalized patients is associated with decreased bacterial 
richness and profound changes in the gut microbiome. 
One study revealed that 20% of the identified bacteria 
showed significant deviations, with the abundance of oral 
bacteria and potential pathogenic bacteria increasing in 
the gut microbiota of PPI users [67].

Fig. 3 Gut-microbiome-liver-brain crosstalk in sepsis
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The liver
The liver plays a crucial role in metabolism, immunity, 
digestion, detoxification, and vitamin storage. In sep-
sis, the liver may be damaged by pathogens, toxins, or 
inflammatory mediators that induce oxidative stress, 
damaging hepatocytes and resulting in liver dysfunction 
with severe disruption of organ crosstalk [68]. Liver fail-
ure in sepsis is clinically characterized by shock, jaundice, 
coagulopathy, AKI, hypoglycemia, and brain edema [69].

The liver releases multiple inflammatory factors, such 
as TNF-α, triggering various local and systemic immune 
responses [70]. It also produces several endocrine-like 
hepatokines that play critical roles in regulating extra-
hepatic metabolism, such as adropin, fibroblast growth 
factor-21 (FGF-21), hepassocin, leukocyte cell-derived 
chemotaxin‐2 (LECT2), and selenoprotein P, among oth-
ers [71–77].

The dysregulation of liver immune function and hepa-
tokine secretion profile must deeply affect organ cross-
talk in sepsis, leading, among others, to cardiovascular 
dysfunction, inflammation, and insulin resistance [73]. 
These effects may exacerbate subsequent organ injury 
and lead to progression to MODS in sepsis.

The liver and kidney play crucial roles in maintaining 
body homeostasis and eliminating metabolic byproducts 
and drugs, highlighting a deep interconnection between 
the two organs. Dysfunction of one of these organs in 
sepsis can promote significant dysfunction in another 
[42, 78–80].

There are extracorporeal techniques aimed at provid-
ing hepatic support in patients with liver failure, such 
as MARS® and Prometheus®, through the clearance of 
inflammatory mediators and bilirubin. One study dem-
onstrates that MARS® and Prometheus® could clear cyto-
kines from plasma but did not significantly change serum 
cytokine levels [81].

The brain
Sepsis patients commonly develop brain dysfunction 
[82, 83]. Early clinical signs include clumsiness, fatigue, 
impaired concentration, and apathy, which may later 
progress to delirium, confusion, and coma.

The gut microbiome and the liver deeply affect brain 
function in septic patients [57, 84–89]. The gut micro-
biome’s production of SCFAs influences the production 
of neurotransmitters such as glutamate, glutamine, and 
γ-aminobutyric acid (GABA), among others [90]. 95% of 
serotonin is produced from tryptophan produced in the 
gut by the microbiome [91, 92]. Serotonin is an important 
neurotransmitter that regulates behavior and memory.

Sepsis disrupts microbiota–gut–brain axis homeo-
stasis, thereby causing neurological dysfunction with 
impairments in memory, concentration, verbal fluency, 
and executive functioning [89], possibly resulting in 

sepsis-associated encephalopathy (SAE). Whether sys-
temic infection affects the intestinal microbiota that 
induces SAE or whether SAE is caused exclusively by a 
dysregulated host immune response remains unclear 
[89]. Some of the late features of infection-induced sick-
ness are comparable to the clinical symptoms of depres-
sion. Severe sepsis can be associated with brainstem 
dysfunction, which is clinically characterized by impaired 
heart rate variability with decreased sympathovagal bal-
ance and respiratory rate variability [83, 93]. The brain 
dysfunction in sepsis is also linked to the disruption of 
the circadian clock, which plays a crucial role in regulat-
ing immune functions and inflammatory responses [94].

In conclusion, the gut microbiome plays a central role 
in regulating the inflammatory response. In sepsis, there 
is a shift from a healthy microbiome to a pathobiome, 
which can lead to gastrointestinal failure. This failure 
can, in turn, induce dysfunction in other organs through 
organ crosstalk. Multiple therapeutic interventions in the 
ICU, such as antibiotics, anesthesia, nutrition, and PPIs, 
affect the gut microbiome. The liver plays a crucial role in 
maintaining body homeostasis by eliminating metabolic 
byproducts and regulating immunity, releasing multiple 
inflammatory factors that broadly participate in organ 
crosstalk affecting numerous organs. The dysregulation 
of liver function deeply affects organ crosstalk in sepsis, 
leading to cardiovascular dysfunction and inflammation, 
ultimately resulting in MODS. The gut microbiome and 
the liver have a close, bidirectional interaction with the 
brain. Sepsis disrupts the homeostasis of the gut-micro-
biome-liver-brain axis, triggering cognitive impairment 
and the development of SAE.

Adipose tissue–muscle–bone crosstalk in sepsis
The adipose tissue
Adipose tissue produces and secretes many mediators, 
collectively called adipokines [30, 71, 76, 77, 95–101]. 
Adipokines modulate the metabolism of distant organs 
and tissues such as the liver, pancreas, bone, muscle, and 
heart. The most well-known adipokines are leptin, adipo-
nectin, resistin, and TNF-α [102]. Leptin acts as a proin-
flammatory cytokine [102]. Leptin deficiency and leptin 
resistance induce alterations in cytokine production and 
increase susceptibility to infectious diseases [103].

Brown adipose tissue (BAT) is responsible for heat pro-
duction but also secretes molecules called batokines that 
mediate the general metabolic activity of the liver, heart, 
muscle and immune functions [104]. Batokines include 
FGF-21, IL-6, and exosomal microRNAs (miR-99b) [105]. 
How these adipokines and batokines participate in the 
inflammatory response in sepsis remains unclear.
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The bone and the muscle
Both bone and muscle regulate the utilization, distri-
bution, and delivery of nutrients and other substrates 
[106]. Bone provides the most significant storage site for 
calcium and phosphate and promotes the production 
of mesenchymal stem cells and hematopoiesis. Osteo-
kines derived from bone cells, such as osteocalcin and 
sclerostin, induce muscle anabolism and catabolism [98, 
107–110]. There is a strong connection between other 
regulatory systems and bone metabolism, such as vita-
min D metabolism, which involves kidney–liver crosstalk 
[111].

Muscle is the largest depot for glucose disposal and 
the storage of amino acids. Myokines derived from myo-
cytes include IL-6, irisin, myostatin, and FGF-21 [77, 97, 
98, 106, 112–116]. Muscle disuse and atrophy result in 
osteoporosis, a process that also involves IL-6 [117].

In conclusion, adipose tissue, muscle, and bone func-
tion as metabolic reservoirs and in inflammatory regula-
tion. As these components constitute most of the body 
mass, they must play a fundamental role in regulating 
the inflammatory response and interorgan communica-
tion in sepsis. In septic patients, immobilization leads to 
muscle disuse and atrophy, promoting osteoporosis. IL-6 
plays an essential role in this process. Overall, the dys-
regulation of adipose, muscle, and bone metabolism may 
lead to the dysregulation of thermogenesis and glucose 
metabolism and impact the inflammatory response. We 
lack knowledge of how these systems are effectively regu-
lated in sepsis.

Forward to the future: monitoring organ cross-talk
Organ crosstalk in sepsis involves a complex signaling 
network in which various mediators participate in mul-
tiple regulatory and counterregulatory pathways between 
native organs. Understanding the diverse and sometimes 
conflicting actions of the mediators involved in organ 
crosstalk is challenging (Table 1). The challenge is com-
pounded by the reality that critically ill patients often 
necessitate multiple support techniques, resulting in 
intricate crosstalk between their native organs and arti-
ficial organ support. A recent review raises this question, 
categorizing the crosstalk into four major subgroups: 
between two or more native organs, between native and 
artificial organs, between two or more artificial organs, 
and between multiple native and artificial organs, which 
is frequently observed in critical patients [118].

Currently, the approach to treating septic shock is based 
on regular evaluation of the clinical course and treatment 
efficacy through repeated measurements of metabolites 
that could be used as biomarkers. This approach has been 
insufficient for mitigating the mortality associated with 
organ dysfunction in patients with septic shock. We need 

to improve our analysis of the impaired organ crosstalk 
that precedes organ dysfunction.

How can organ crosstalk be tracked in sepsis patients? 
Metabolomics may be performed in this situation [119]. 
The applicability of metabolomics studies in clinical prac-
tice may provide a better understanding of disease mech-
anisms and the possibility of developing new diagnostic 
and therapeutic methodologies. Exploring the metabolic 
profile that may reflect organ crosstalk is essential for a 
comprehensive understanding of how organ crosstalk 
functions [120].

However, the application of metabolomics does not 
resolve one major limitation. The challenges of causal 
inference and directionality will remain. It is essential to 
consider organ crosstalk as a complex language system to 
address this issue. Language is a system of conventional 
symbols through which group members express them-
selves. Some characteristics of effective language include 
that it is concrete and precise. We know the actions of 
some mediators in organ crosstalk, but we must obtain 
a better understanding of the rules that enable concrete 
and accurate instructions to be constructed. How are 
those rules defined in a complex system? The relationship 
between the complexity of a system and the emergence of 
higher-level properties from the interactions of its com-
ponents is intriguing and a significant focus in computa-
tional analysis [121, 122]. To predict the outcome of such 
complex systems, like organ crosstalk, it is more impor-
tant to characterize their functional architecture, in other 
words, to identify the relevant macroscopic levels that 
determine the overall result, than to have an extensive 
microscopic description [123]. Perhaps it is not essen-
tial who produces what, but rather how the mediators 
interact in the relevant macroscopic levels, from which 
higher-level properties emerge, enabling clarification, for 
example, of the various sepsis phenotypes [124]. Further 
work is needed, and perhaps by integrating multiple data 
sources, including metabolomics profiles, through data 
fusion, we can develop a more accurate personalized 
model of the mechanics of sepsis [125] with the poten-
tial to create new models of prediction of the evolution of 
disease and new therapeutics targets [126].

Conclusions
MODS remains a frequent cause of mortality in septic 
patients despite the advances in intensive care medicine 
[23]. Understanding the mechanics of organ crosstalk in 
sepsis and all the complex signaling mechanisms between 
organs will enable the anticipation of organ damage and 
the development of individualized therapeutic strate-
gies for critically ill patients. This review reinforces the 
intimate and complex connections between multiple 
organs and systems involved in organ crosstalk in sep-
sis. New methods are necessary to enable more precise 
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monitoring and the development of individualized thera-
peutic strategies. The potential application of metabolo-
mics in evaluating organ crosstalk in sepsis is exciting.

Abbreviations
Ach  Acetylcholine
AKI  Acute Kidney Injury
ANF  Atrial Natriuretic Factor

ARDS  Acute Respiratory Distress Syndrome
BAT  Brown Adipose Tissue
BNP  Brain Natriuretic Peptide
CIRCI  Critical Illness-Related Corticosteroid Insufficiency
CKD  Chronic Kidney Disease
CRS  Cardiorenal Syndrome
EV  Extracellular Vesicles
FGF-21  Fibroblast Growth Factor 21
GABA  γ-Aminobutyric Acid
HPA axis  Hypothalamic–Pituitary–Adrenal Axis

Table 1 Summary list of contributing factors in organ crosstalk in sepsis
Organ system Contributing factors Pathophysiological processes in sepsis
Heart (Cardiokines) Natriuretic peptides: Atrial natriuretic 

factor (ANF) and B-type natriuretic 
peptide (BNP)

Regulation of fluid homeostasis, reduction of systemic vascular resistance, and anti-
inflammatory effects.

Angiotensin II Potent vasoconstrictor with pro-inflammatory profile.
Interleukin-6 (IL-6) Central mediator of pro-inflammatory response in the acute phase response of sepsis.

Lung Interleukin-1 (IL-1) family Group of cytokines that regulate the inflammatory responses in sepsis.
Interferon-gamma (IFN-γ) Critical for innate and adaptive immunity.
IL-6 Central mediator of pro-inflammatory response in the acute phase response of sepsis.

Kidney Uremic molecules: Indoxyl sulfate Regulate signaling and metabolism in multiple organs through a remote sensing and 
signaling network.

Interferon-alpha (IFN-α) Regulator of antiviral immunity.
IL-6 Central mediator of pro-inflammatory response in the acute phase response of sepsis.

Gut and Microbiome Short-chain fatty acids (SCFA): acetate, 
propionate, butyrate

Regulation of the gut microbiome, intestinal epithelial barrier, and inflammatory 
response. Modulation of the production of neurotransmitters such as Glutamate and 
γ-aminobutyric acid (GABA).

Succinate Function as a metabokine regulating systemic metabolism.
Tryptophane Essential amino acid whose metabolites play critical roles in metabolism regulation 

and inflammation.
Liver (Hepatokines) Fibroblast growth factor 21 (FGF-21) 

and Growth/differentiation factor-15 
(GDF-15)

FGF-21 regulates metabolism. GDF-15 is expressed in low concentrations in most 
organs and upregulated in the liver after injury. It also regulates inflammatory 
pathways.

Adropin Regulation of energy metabolism and insulin resistance.
Selenoprotein P Regulation of stress responses, metabolism, and immunity with important redox and 

anti-inflammatory activity.
Leukocyte cell-derived chemotaxin-2 
(LECT2)

Modulate multiple physiological processes, including immune response and glucose 
metabolism.

Tumor Necrosis Factor-alpha (TNF-α) Primary mediator regulating the pro-inflammatory response in sepsis.
Nervous system Adrenomedullary hormones (cat-

echolamines): Adrenaline, Noradrena-
line, and Dopamine.

Regulation of blood pressure and myocardial contractility. Modulation of metabolic 
responses to stress.

Hypothalamic hormones: Corticotro-
pin-releasing hormone (CRH)

CRH stimulates the anterior pituitary gland to release the adrenocorticotropic hor-
mone (ACTH), which acts on the adrenal cortex to release Cortisol. Cortisol regulates 
the stress response and metabolism to injury.

Neurohypophysial hormones: 
Vasopressin

Regulation of blood pressure, sodium homeostasis, and kidney function.

Enteric neurohormones: Serotonin. Essential functions in learning, and memory. Regulates vasoconstriction, hemostasis, 
and blood clotting.

Adipose (Adipokines) Leptin Pro-inflammatory mediator. Essential in energy metabolism and endocrine 
modulation.

Adiponectin Anti-inflammatory activities and suppression of tumor necrosis factor-alpha (TNF-α). 
Induces the anti-inflammatory cytokine interleukin-10 (IL-10).

TNF-α TNF-α is also produced in adipocytes as an Adipokine, promoting insulin resistance.
Muscle (Myokines) IL-6 IL-6 produced from muscle in response to muscle contraction is associated with 

anti-inflammatory functions. The cytokine response to exercise is not preceded by an 
increase in plasma-TNF-α as in sepsis.

Myostatin Myostatin inhibits muscle differentiation and causes muscle atrophy.
Bone (Osteokines) Osteocalcin Metabolism regulation.

Sclerosin Inhibits muscle formation and hinders bone formation.
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ICU  Intensive Care Unit
IFN-γ  Interferon‐Gamma
IL-6  Interleukin-6
IL-17  Interleukin-17
IL-1β  Interleukin-1β
LECT2  Leukocyte Cell-Derived Chemotaxin‐2
LPS  Lipopolysaccharide
microRNA  Microribonucleic Acid
MODS  Multiple Organ Dysfunction Syndrome
OXPHOS  Oxidative Phosphorylation
PICS  Persistent Inflammation, Immunosuppression, And Catabolism 

Syndrome
PNECs  Pulmonary Neuroendocrine Cells
PPIs  Proton Pump Inhibitors
RAAS  Renin-Angiotensin-Aldosterone System
RNA  Ribonucleic Acid
RRT  Renal Replacement Therapy
SAE  Sepsis-Associated Encephalopathy
SCFAs  Short-Chain Fatty Acids
TGF-β1  Transforming Growth Factor-β1
TNF-α  Tumor Necrosis Factor Alpha
VV-ECMO  Venous-Venous Extracorporeal Membrane Oxygenation
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