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Beyond intracranial pressure: optimization of
cerebral blood flow, oxygen, and substrate
delivery after traumatic brain injury
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Abstract

Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of
care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the
cascade of potentially deleterious events that occur in the early phase following initial cerebral insult—after TBI, is
complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply
of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type
of injury and may vary individually and over time. In this setting, patient management can be a challenging task,
where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical
evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral
microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/
energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond
ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and
brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some
of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel
approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using
multimodal brain monitoring.
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Review
Introduction
Traumatic brain injury (TBI) first causes primary cere-
bral lesions related to the initial traumatic brain insult it-
self. In the early phase following TBI, a complex series
of pathologic events triggers the propagation of a “second-
ary” injury cascade to cerebral areas initially not involved
by TBI. Ischemia, hypoxia, and energy dysfunction are im-
portant determinants of secondary brain injury. Supporting
the injured brain with adequate cerebral blood flow (CBF)
and delivery of oxygen and energy substrate therefore is
a mainstay of therapy after TBI (Figure 1). Despite this
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notion and the growing knowledge of posttraumatic sec-
ondary brain injury, the management of patients with TBI
remains mainly focused to standard intracranial pressure
(ICP)/cerebral perfusion pressure (CPP) therapy. Although
this approach still constitutes an important part of TBI
management [1,2], ICP-based monitoring and treatment
alone may not be enough to modify TBI prognosis [3]. This
may be partly due to the complexity of TBI pathophysi-
ology and the heterogeneity of TBI lesions [4]. Increasing
clinical evidence suggests that multimodal brain monitor-
ing, including brain tissue oxygen tension (PbtO2), cerebral
microdialysis (CMD), transcranial Doppler (TCD) among
others, may optimize CBF and the delivery of oxygen and
energy substrates to the injured brain in individual pa-
tients. We defined neuromonitor as a monitoring device
(invasive or noninvasive) that allows assessment of dy-
namic changes of cerebral physiology. Based on that, we
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Figure 1 Pathophysiology of secondary cerebral damage after TBI. A schematic view of the pathophysiology of secondary cerebral damage
after traumatic brain injury (TBI) that supports the concept of optimizing cerebral blood flow, the delivery of oxygen and the adequate supply of
energy substrates.
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restricted neuromonitoring techniques described in this
review to those monitors allowing measurement of CBF,
cerebral oxygenation, and energy substrates at the bedside
in the ICU.

Pathophysiology and diagnosis
Macrovascular dysfunction
Under physiological conditions, the relationship between
CBF and CPP is linked to the cerebral autoregulatory
capacity, thus CBF remains constant over a wide range
of CPP. After TBI, depending on the nature of the lesion
(diffuse vs. focal), there may be a large heterogeneity in
brain autoregulatory capacities [5]. Reduction of cerebro-
vascular reserve and impairment of cerebral autoregulation
cause CBF to become increasingly dependent on CPP, thus
CBF may be inadequate/insufficient despite CPP is within
so-called “normal” ranges (50–70 mmHg) [6]. In addition,
apart from the individual relationship between CBF and
CPP, secondary elevations of ICP also could contribute to
further decrease CPP and aggravate ischemia.
The decrease of CBF after TBI was well documented by

different studies using xenon-enhanced computed tomog-
raphy (CT) [5] or positron emission tomography (PET)
[7] that revealed heterogeneous regional disturbance of
CBF. It also is important to stress the point that reduced
CBF does not necessarily mean ischemia. Rather, the ba-
lance between CBF and cerebral metabolic rate of oxygen
(CMRO2) determines whether the tissue is ischemic or
not. For example, the decrease of CBF can be matched by
a decrease of cerebral metabolic rate of oxygen (CMRO2),
implying adequate CBF and preserved metabolic coupling,
as it can be seen with deep sedation. In these circum-
stances, so-called metabolic autoregulation is the cause of
matched reduction of CBF, in the absence of ischemia.
Conversely, when CBF reduction is greater than CMRO2

decrease, CBF becomes inadequate to satisfy energy de-
mand, exposing the tissue to hypoperfusion and eventually
ischemia. Importantly, low CBF and ischemia might occur
despite CPP ≈ 65-75 mmHg [8]. Hence, CPP is not reli-
able to assess CBF in individual patients and other bedside
tools are necessary.
Among noninvasive methods, TCD has been most

studied and is an accurate tool to assess brain perfusion
at the bedside. The technique consists in the measure of
middle cerebral artery CBF velocities (CBFV; systolic,
diastolic and mean) and the calculation of the pulsatility
index [PI = (systolic CBFV – diastolic CBFV) / mean
CBFV]. Reduced CBF, e.g., because of elevated ICP or low
PaCO2, is diagnosed by low diastolic CBFV, a peaked wave-
form, and an elevated PI > 1.2-1.3 (Figure 2A). TCD has
recently been used in the emergency room to detect high
ICP/low CBF in TBI patients [9].
Invasive thermal diffusion flowmetry (TDF) is based

on the insertion of an intraparenchymal probe (Thermal
Diffusion Probe; Hemedex® Cambridge, MA) generally
next to ICP/PbtO2 probes. The technique uses thermal
conductivity of the brain tissue and allows measuring re-
gional cerebral blood flow (rCBF) in a quantitative way.
The TDF technique was used in TBI to assess cerebral
autoregulation and CO2 vasoreactivity and to calculate
local cerebral vascular resistance. However, limitations of
TDF, such as fever, sensor displacement, and the small
area monitored, hindered its clinical application. Vajkoczy
et al. showed good agreement between TDF and xenon-
CT for regional CBF measurements [10]. Recent studies
showed the potential utility of TDF, in combination with
PbtO2, to optimize the management of CPP in brain-
injured patients. In SAH patients, Muench et al. used



Figure 2 Noninvasive transcranial Doppler to manage CBF/CPP at the bedside. Example of transcranial Doppler in a patient with acute
hydrocephalus and increased intracranial pressure (ICP). A. Before extraventricular drainage, TCD in the middle cerebral artery (MCA) shows
cerebral ischemia with low diastolic CBF velocities (<20 cm/sec) and elevated pulsatility index (PI > 1.4). B. After extraventricular drainage,
normalization of ICP was associated with normalization of diastolic velocities and PI, reflecting increased CBF.
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TDF to guide medical therapy of delayed cerebral ische-
mia [11] and show that MAP augmentation was the only
single useful intervention to improve CBF and PbtO2,
whilst hypervolemia and hemodilution had only marginal
effects at best, supporting recommended practices of in-
duced hypertension alone over “triple-H” therapy for the
medical management of delayed cerebral ischemia. After
TBI, TDF may guide CPP management at the bedside
and identify individual MAP/CPP thresholds [12]. Precise
quantification of rCBF with TDF remains highly dependent
on stable patient temperature and may be altered signifi-
cantly in conditions of severe hyperthermia and rapid fluc-
tuations of patient’s temperature. TDF seems a promising
tool that may progressively become part of brain multi-
modality monitoring in the future. However, so far data are
limited to small single-centre studies.

Microvascular dysfunction
Macrovascular disturbances and reduced/inadequate CBF
are not the only determinants of secondary ischemia. Im-
pairment of the microvascular circulation also could play a
key role in the constitution of secondary brain damages.
Evidence for post-TBI microcirculatory dysfunction is both
experimental and clinical. Marked disturbances in micro-
circulatory blood flow can be due to swelling of astroglial
foot processes and compression of surrounding capillaries
[13-15], or the formation of thrombi in the cerebral micro-
circulation [16]. In addition, electron microscopy showed
endothelial edema, vacuolization and pinocytic vesicles
[13,14,17]. Microvascular edema might cause increased
barriers for oxygen diffusion with reduction of cellular
oxygen delivery despite the absence of frank cerebral is-
chemia [17]. Microvascular damage accounts for the in-
ability of pericontusional tissue to increase the oxygen
extraction fraction (OEF = SaO2-SvO2/SaO2) in response
to reduction of CBF induced by hyperventilation. Consi-
dering capillaries architecture as a central role for oxygen
delivery to the cell [18], heterogeneity of red blood cell
transit time into capillaries could lead to hypoxia in the
injured brain, despite normal CBF.
The direct measurement of PbtO2 is now increasingly

recognized as part of the bedside neuromonitoring after
severe TBI [19] and can be used to detect brain hypoxia.
Low PbtO2 has been reported to be associated with
worse outcome after TBI [20,21], independently of brain
hypoperfusion detected by ICP/CPP monitoring [22].
Laser Doppler flowmetry (LDF) is an invasive fiber-

optic laser probe that can be inserted into brain paren-
chyma to measure regional perfusion of a tissue volume
of approximately 1 mm3. Contrary to TDF, LDF provides
only qualitative—but not quantitative—measurements of
microvascular perfusion [23]. Routine use of this optical
technique remains complex and artifacts, such as hetero-
geneity of microvascular architecture, probe motion,
room temperature, and strong external light and sound
may compromise data quality [24].
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Energy dysfunction
Brain activation and any augmentation of energy demand
are followed by an increase in CBF and OEF. What is pe-
culiar to the brain is its “avidity” for glucose utilization.
Raichle and colleagues demonstrated that neuronal activa-
tion was followed by an increase in CBF and glucose
utilization (≈30%) without a proportionate increase of OEF
and cerebral metabolic rate of oxygen (CMRO2; ≈6%): this
phenomenon is known as brain metabolic uncoupling [25].
Experimental and clinical studies have shown that glucose
utilization may increase dramatically after TBI, in the ab-
sence of oxygen or CBF limitation (cerebral hyperglycolysis)
[26-28]. This may lead to a reduction of cerebral glucose
below the critical level and to a state of brain energy dys-
function or crisis [28,29]. In addition, cerebral oxidative
metabolism may also be impaired due to mitochondrial
dysfunction, thereby resulting in reduction of CMRO2 up
to 50% in the acute period after TBI [30]. Altogether these
findings support the view that nonischemic mechanisms
are implicated in the pathophysiology of TBI.

Bedside clinical approach
Cerebral blood flow optimization
Determining the optimal CPP
Despite its limitations, the measure of ICP for the calcu-
lation of CPP is essential to the management of TBI at
the bedside. Low CPP was well correlated with poor out-
come in several studies [31,32]. All of these studies de-
termined a critical ischemic threshold of CPP between
50 and 60 mmHg. Accordingly, and due to lack of benefit
in increasing CPP to higher levels [33], actual recommen-
dations from the Brain Trauma Foundation suggest a tar-
get of CPP between 50 and 70 mmHg [34]. However,
recent clinical studies in TBI patients have repeatedly de-
monstrated that the so-called “optimal” CPP (i.e., the CPP
threshold below which secondary ischemia occurs) differs
individually and might vary over time within each single
patient [6,8,35]. Arterial blood pressure/intracranial pres-
sure (ICP)-derived pressure reactivity index (PRx) could be
used to assess cerebrovascular pressure reactivity [36]. This
index relies on spontaneous changes of arterial blood pres-
sure and is calculated using a time correlation method.
PRx, when averaged over specific CPP thresholds, demon-
strated a U-shaped curve suggesting a specific relationship
with the level of CPP. Although its utility can be debated,
PRx may be useful in determining optimal CPP in indivi-
dual patients. The reader also can refer to recent reviews
on this particular topic [37].
Bedside measurement of PbtO2 also can be used as a

surrogate marker of CBF. In agreement with recent data
indicating that the venous fraction within cortical micro-
vasculature exceeds 70%, it is suggested that PbtO2 pre-
dominantly reflects venous PO2 [38]. Among the factors
affecting PbtO2, the effect of decreased cerebral perfusion
pressure (CPP) and CBF has been the most studied [39].
PbtO2 appears to correlate well with regional CBF and the
relationship follows the autoregulation curve regulating
CBF along a wide range of mean arterial pressure (MAP)
[40]. The fact that increase in PbtO2 can be obtained with
CPP and MAP augmentation further supports the notion
that PbtO2 is a good marker of CBF and cerebral ischemia
in certain conditions. Rosenthal and colleagues, however,
using parenchymal TDP and PbtO2 monitoring, showed
that PbtO2 more appropriately reflects the product of CBF
and arteriovenous oxygen tension difference (AVTO2)
[41]. Based on the formula PbtO2 = CBF ∙ AVTO2, re-
duced PbtO2 occurs frequently because of low CBF. How-
ever, PaO2 also is an important determinant of PbtO2 [42]
and additional pathological events (e.g., impaired lung
function [43] or impaired O2 extraction due to increased
gradients for oxygen diffusion in injured brain tissue [17])
might reduce PbtO2, in the absence of reduced CBF.
Hemoglobin concentration also affects PbtO2 and reduced
hemoglobin concentration below 9 g/dl may aggravate
brain hypoxia [44].
CBF being an important determinant of PbtO2, it is

possible to test at the bedside the individual response of
PbtO2 to a vasopressor-induced increase of CPP/mean
arterial pressure (MAP). This has originally been de-
scribed as the oxygen reactivity index (ORx) and can be
used to assess the state of cerebral autoregulation [45]. In
practice, the PbtO2 response can be used to guide the
management of CPP at the bedside. In pathological sit-
uations, the relationship between PbtO2 and CPP may
become linear (Figure 3), hence manipulating CPP to
maintain PbtO2 > 15–20 mmHg (PbtO2-directed strategy)
might optimize CBF and avoid secondary ischemia [21,46].
Additional therapeutic interventions that may improve
PbtO2 are described in section III.2 and Figure 4.
Measuring CBF velocities with TCD also could help

physicians to manage CPP. A PI above 1.4 and a dia-
stolic CBFV below 20 cm.sec-1 are characteristic TCD
markers of ischemia after severe TBI [47], as illustrated
in Figure 2B. In centers with clinical expertise, TCD is
increasingly used to assess brain compliance, CPP and
impending cerebral ischemia in patients in whom inva-
sive ICP is not available. For example, TCD has been used
in the early phase in the emergency room to detect brain
ischemia non-invasively in TBI patients [47], before ICP
monitoring was inserted. TCD also can be used to test
brain autoregulation and vasoreactivity to CO2 [36].

PaCO2

A reduction in PaCO2 results in a proportional reduc-
tion of CBF and cerebral blood volume. While this could
be temporarily useful in decreasing elevated ICP, it must
be underlined that prolonged aggressive hyperventilation
(PaCO2 < 25–30 mmHg) is deleterious for patients with



Figure 3 PbtO2-guided management of CPP in individual patients. Example of a patient exhibiting a linear correlation between CPP and
PbtO2, which suggests impaired cerebrovascular reactivity (elevated oxygen reactivity index, ORx, > 0.7). In this case, higher CPP thresholds
(>80 mmHg) are required to prevent secondary ischemia (PbtO2 < 20 mmHg). This is an example of how PbtO2 monitoring may guide CPP
management and the setting of “optimal” CPP at the bedside.

Figure 4 Management of brain hypoxia. A proposed algorithm
for the practical management of low PbtO2 in patients with
severe TBI.
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TBI by decreasing CBF below the ischemic threshold
[48,49]. Regular measurements of PaCO2 with arterial
blood gas analysis and continuous monitoring of end-
tidal CO2 (EtCO2) must be achieved in every TBI pa-
tients to manage CBF variations secondary to PaCO2.
Again, PbtO2 can be used to manage PaCO2 at the bed-
side [41,50]. Using CO2 reactivity, TCD also detects brain
perfusion changes related to PaCO2 noninvasively and
may be used to evaluate cerebral vasoreactivity and to
tailor individual PaCO2 after TBI [51].

Brain oxygen supply
Cerebral blood flow is one of the most important deter-
minants of brain oxygen delivery. As discussed previ-
ously, arterial blood pressure and CPP are the major
modifiable variables of brain oxygenation. This impli-
cates that manipulating blood pressure and CPP may be
the first and often the most effective intervention to
optimize CBF and oxygen supply to injured brain tissue.
Second-tier interventions to improve PbtO2 despite CPP
modifications include optimization of systemic oxygen-
ation (lung protective ventilation and maintenance of
strict normoxia) [43] and red blood cell transfusion if
hemoglobin is below 9 g/dl [44] (Figure 4).
However, other mechanisms may reduce brain tissue

oxygenation. Among these, diffusion-limited oxygen de-
livery plays a key role and might explain why PbtO2 can
be reduced despite oxygen delivery (PvO2) and CBF are
normal [17]. In clinical practice, this may explain why in
some circumstances brain tissue hypoxia can occur des-
pite ICP/CPP being within normal ranges [22]. Without
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anemia or hypoxia, low PbtO2 despite adequate CBF prob-
ably reflects microcirculatory dysfunction and pericapillary
edema [17]. This has important implications for the man-
agement of PbtO2 and the response of PbtO2 to thera-
peutic interventions.
Hyperoxia
One strategy to force diffusion barriers is to increase the
fraction of dissolved oxygen with hyperoxia. All studies
have demonstrated a robust effect of increasing FiO2 on
brain oxygenation [52]. Whether this increase of PbtO2

is beneficial for patients remains controversial, probably
due to the ability of the brain to use oxygen, i.e., the oxi-
dative metabolism. Therefore, hyperoxia could benefit
some patients in distinct cerebral areas [42]. However,
considering the absence of strong evidence, this strategy
is not recommended in TBI patients.
Erythropoietin
Erythropoietin (Epo) is a promising neuroprotective treat-
ment in experimental models of TBI [53] and exerts signifi-
cant cerebral antiedematous effect [54]. In an experimental
model of diffuse TBI, it was recently shown that Epo, ad-
ministrated intravenously up to 30 minutes after TBI, not
only reverses cerebral edema but also significantly restores
brain tissue oxygenation to normal levels [55]. Electronic
microscopy revealed a decrease of astrocytic end-foot
swelling, which could improve red blood cell transit time.
Hence, Epo, given its combined effects on brain edema,
perfusion, and oxygenation may be particularly promising
for the treatment of TBI. The ongoing “Epo-TBI” study will
Figure 5 Cerebral microdialysis-guided management of glycemic con
relationship between blood and brain glucose, measured by cerebral micro
infusion of a 10% glucose solution was administered and was associated w
illustrates the potential value of CMD for the management of blood glucos
secondary systemic insults (brain glucopenia in this case).
clarify therapeutic potentials of Epo in patients with TBI
(clinialtrials.gov: NCT00987454).

Brain energy supply
Cerebral microdialysis (CMD) has largely contributed to
a better understanding of the pathophysiology of acute
brain dysfunction after TBI and was introduced recently
as an additional bedside neuromonitoring tool in this con-
text. CMD consists in the placement of an intraparen-
chymal probe that has on its tip a semi-permeable dialysis
membrane. A cerebrospinal fluid-like solution, infused
through this catheter, allows hourly sampling of patients’
brain extracellular fluid into microvials for bedside analysis
[56]. CMD provides continuous monitoring of cerebral en-
ergy metabolism at the bedside and the measurement of
absolute and dynamic changes of brain extracellular con-
centrations of glucose, pyruvate, and lactate. Additional
markers, such as glutamate (excitotoxicity) and glycerol
(membrane integrity), can be measured [57,58]. The clini-
cal utility of CMD is mainly to detect impending ischemia/
hypoxia and to assess the energetic state of the injured
human brain [19,59,60]. Abnormal lactate/pyruvate ratio
(LPR) is defined by a LPR > 25 [56], and this threshold is
associated with worse outcome after TBI [57]. Others also
used LPR > 40 as marker of cell energy crisis [56]. In clin-
ical practice, values >35-40 are used to start therapeutic in-
terventions. Elevated LPR can be due to ischemia/hypoxia:
in these circumstances, elevated lactate is accompanied by
low pyruvate, as well as low cerebral glucose and brain oxy-
gen. “Ischemic/hypoxic” LPR elevations can reach very high
levels, well above 40. A second pattern also can be seen,
where elevated lactate/normal-to-high pyruvate is seen and
trol in individual patients. Example of a patient showing a linear
dialysis (CMD) glucose. Because of low CMD glucose <1 mmol/L,
ith a parallel increase of both arterial blood and CMD glucose. This
e control in patients with severe brain injuries, aiming to prevent
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indicates the cause of LPR elevation is nonischemic in na-
ture and can be due to hyperglycolysis [61] or mitochon-
drial dysfunction [28]. In this second “nonischemic” pattern
levels of LPR are often only slightly elevated (LPR 40–50).
Elevated LPR is therefore not only a marker of ischemia,
but rather reflects the metabolic state of the tissue.

Brain glucose supply and blood glucose control
Cerebral microdialysis has greatly contributed to better
manage glucose control in TBI patients at high risk for
secondary brain injury [62,63]. Glucose is the main energy
source for the human brain. Therefore adequate glucose
supply is crucial to maintain brain function. Supply of glu-
cose is provided by selective transporters (GLUT) that
allow glucose diffusion across the blood brain barrier to
brain cells. Glucose supply to the brain is highly dependent
on the availability of glucose from the systemic circulation
(Figure 5) [64]. Therefore, so-called “intensive” blood glu-
cose control with the use of insulin therapy may reduce
brain glucose availability and potentially increase energy
dysfunction or aggravate metabolic distress [63,65-67].
Moderate (≈8-10 mmol/L) vs. intensive (≈4.5-6 mmol/L)
glucose control does not confer any benefit on TBI out-
come [68]. Using CMD, systemic glucose concentration
can be targeted to CMD glucose, to avoid neuroglucopenia
(CMD <1 mmol/L). In some patients, this can occur al-
ready at blood glucose levels <8 mmol/l, and therefore sys-
temic glucose must be adapted to avoid low brain glucose,
by keeping blood glucose at 8–10 mmol/L, if necessary by
giving slow infusion of 10% i.v. glucose. It is important to
realize however that reduced brain glucose can be due to
other reasons, including ischemia/energy crisis, elevated
ICP/low CPP; in these circumstances, these causes must be
treated first. Given these findings, when CMD is available
precise blood glucose levels should be targeted to CMD
glucose to avoid levels <1 mmol/L. Otherwise, moderate
blood glucose control (≈8-10 mmol/L) is recommended
for the management of patients with severe brain injury.

Alternative energy substrates
Glucose utilization involves two different pathways. Oxi-
dative phosphorylation is the energy-generating biochem-
ical process whereby pyruvate, produced by glycolysis, is
oxidized to CO2 and H2O with the production of 30 moles
of ATP. This process requires oxygen. Glycolysis is the
energy-generating biochemical process whereby glucose is
converted to pyruvate and lactate with the net production
of 2 moles of ATP. This process is nonoxidative, produ-
cing lactate [25].
Evidence from in vitro and in vivo studies demon-

strates that lactate is an important energy substrate for
neurons [69], particularly in conditions of hypoxia [70].
Recently, evidence of brain lactate utilization in humans
with acute brain injury has been suggested [61,71].
Exogenous administration of lactate with the use of so-
dium lactate perfusions improves cerebral performance
during intense exercise [72] and in diabetic patients [73],
with sparing of brain glucose [74]. Preliminary studies in
TBI patients suggest that sodium lactate solutions may be
a future therapeutic strategy, potentially more effective to
lower ICP than mannitol [75].

Conclusions
ICP/CPP monitoring is important after TBI since CBF is
highly dependent on CPP below the lower limit of cerebral
autoregulation, i.e., CPP <50 mmHg. Above the ischemic
threshold, tailoring CPP for each patient needs a more
comprehensive approach guided to brain multimodal mo-
nitoring to target CBF, oxygen delivery, and supply of brain
energy substrates individually. Intraparenchymal PbtO2 re-
flects the complex interaction between CBF and oxygen
delivery/consumption by the injured brain. As a result,
PbtO2-targeted therapy might help managing CPP and
prevent secondary cerebral ischemia and can be considered
as a useful addition to standard ICP monitoring. Transcra-
nial Doppler also can help to diagnose reduced CBF and
elevated ICP at the bedside noninvasively and may help to
direct in the early phase the need for additional intracranial
monitoring and for emergent surgical interventions. Cere-
bral microdialysis provides essential information on brain
metabolism and the availability of main energy substrates
(mainly glucose) and also is potentially useful to detect
secondary delayed cerebral ischemia and manage blood
glucose control. Beyond ICP monitoring, contemporary
management of severe TBI patients is increasingly based
upon a more comprehensive clinical approach that must
not be limited to ICP/CPP therapy but also includes the in-
dividual optimization of CBF, oxygen, and energy substrate
delivery guided by bedside brain multimodal monitoring.
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