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Feeding critically ill patients the right ‘whey’:
thinking outside of the box. A personal view

Paul E Marik
Abstract

Atrophy of skeletal muscle mass is an almost universal problem in survivors of critical illness and is associated with
significant short- and long-term morbidity. Contrary to common practice, the provision of protein/amino acids as a
continuous infusion significantly limits protein synthesis whereas intermittent feeding maximally stimulates skeletal
muscle synthesis. Furthermore, whey-based protein (high in leucine) increases muscle synthesis compared to
soy or casein-based protein. In addition to its adverse effects on skeletal muscle synthesis, continuous feeding is
unphysiological and has adverse effects on glucose and lipid metabolism and gastrointestinal function. I propose
that critically ill patients’ be fed intermittently with a whey-based formula and that such an approach is likely to be
associated with better glycemic control, less hepatic steatosis and greater preservation of muscle mass. This paper
provides the scientific basis for my approach to intermittent feeding of critically ill patients.
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Review
Survivors of critical illness suffer from marked muscle
wasting which may take years to recover. The loss of
muscle mass is associated with muscle weakness, pro-
longed mechanical ventilatory support, fatigue and de-
layed recovery [1–3]. This disorder is known as critical
illness myopathy (CIM) or intensive care unit-acquired
weakness (ICUAW) [1–3]. CIM is characterized by a
diffuse non-necrotizing myopathy accompanied by fiber
atrophy, fatty degeneration of muscle fibers and fibrosis
[4]. Multiple factors are likely to play a role in inducing
CIM including muscle inactivity, inflammation, cellular
energy stress, corticosteroids, hyperglycemia, neuro-
muscular blocking agents and inadequate nutritional
support [2, 4]. CIM is exceedingly common in ICU survi-
vors, being reported in up to 46 % of cases [5]. Herridge
et al. followed 109 survivors of ARDS for up to 5 years
after discharge from the ICU [6, 7]. All patients reported
poor functional status with proximal weakness and fatigue
at discharge. At 1 year, the distance walked in 6 minutes
was 66 % of predicted which increased to 76 % of pre-
dicted at 5 years [7].
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Muscle breakdown during acute illness
In health, net muscle synthesis is stimulated in the post-
prandial state while net muscle breakdown occurs be-
tween meals with muscle mass being maintained through
balanced protein synthesis and breakdown [8]. Distinct
metabolic pathways are involved in the synthesis and
breakdown of muscle. Figure 1 provides an overview of
these pathways. Muscle protein synthesis and not break-
down is more responsive to anabolic stimuli [9]. In healthy
individuals, the anabolic effects of feeding occurs due to
an increase in the synthetic rate of muscle protein synthe-
sis of approximately 300 % with a concomitant 50 % de-
crease in the rate of protein breakdown [8, 10]. In healthy
young men following an oral bolus of essential amino
acids, there is a lag period of 45–90 min followed by an
increase in the muscle protein synthetic response which
continues for about 90 min then rapidly returns to base-
line [8, 10, 11]. The duration and degree of the muscle
protein synthetic response following protein ingestion is
influenced by exercise, age and the dose and type of pro-
tein ingested and the anabolic/catabolic state of the indi-
vidual [8]. It should be noted that other macronutrients
have no additive anabolic effects and that the addition of
carbohydrate to protein does not enhance muscle protein
synthesis or attenuate muscle protein breakdown [8, 12].
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Fig. 1 A simplified overview of the anabolic and catabolic pathways in skeletal muscle.AKT= protein kinase b;FOXO-1=forkhead box class O-1;
IRS-1=insulin receptor substrate-1; MAFBx=muscle atrophy f-box-1; MURF-1=muscle ring finger protein 1; NF κB= nucelar factor κB; IKK = inhibitor
of nuclear factor κB kinase; IκB=inhibitor of nuclear factor κB; 4E-BP1= eukaryotic initiation factor (eIF) 4E binding protein 1; P70S6K = 70-kDa
ribosomal protein S6 kinase; mTOR= mammalian target of rapamycin; TNF-α= tumour necrosis factor-α
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In critical illness, loss of muscle mass results from an
imbalance between muscle proteolysis and protein synthe-
sis, with proteolysis overwhelming an inadequate synthetic
response [13]. Proteolysis is mediated by several cellular
signalling networks, but the predominant proteolytic
pathway activated in models of muscle atrophy is the
ubiquitin–proteasome system [14–16]. Two muscle-
specific E3-ligases belonging to the ubiquitin–proteasome
complex, muscle RING-finger 1 (MuRF1) and muscle
atrophy F-box (MAFbx), have been identified as key
regulators of proteasome-mediated protein breakdown
[4, 17–19]. Forkhead box O (FOXO) are a family of
transcriptional factors that plays a major role in muscle
wasting primarily by increasing expression of MuRF-1
and MAFbx [20, 21]. FOXO is activated (dephosphory-
lated) by inflammation and sepsis.
Puthucheary and colleagues demonstrated a 17 % re-

duction in the rectus femoris cross-sectional area in crit-
ically ill patients after 10 days of mechanical ventilation
[13]. Loss of muscle mass was greatest in those with
multisystem failure and increased with increasing length
of stay. In this study, the pattern of intracellular signalling
demonstrated increased muscle breakdown and decreased
synthesis. Wollersheim and colleagues investigated the dy-
namics of myosin degradation in patients requiring mech-
anical ventilation for at least 15 days [4]. These authors
demonstrated decreased gene expression of the myosin
heavy chain isoforms with significantly increased
expression of MuRF-1, MAFbx and FOXO-1 mRNA.
Constantin et al. reported similar findings; in addition,
these authors reported widespread dephosphorylation (in-
activation) of the proteins regulating translation initiation
factor activation and protein synthesis (AKt1, mTOR, 4E-
BP1) and increased expression of myostatin [22].

Activation of muscle synthesis and the role of leucine
In skeletal muscle, the binding of insulin or insulin growth
factor-1 (IGF1) activates the phosphoinositol-3 kinase/pro-
tein kinase B (PI3K/AKT) pathway inducing muscle syn-
thesis by stimulating translation via mammalian target of
rapamycin (mTOR) kinases [23]. In addition, IGF-1 sup-
presses MuRF1 transcription in part via the phosphatidyl-
inositol 3 kinase/AKT pathway; Akt phosphorylates FOXO
which is then sequestered in the cytoplasm preventing
transcription of FOXO target genes [24]. mTOR exerts a
critical role in mediating signal transduction necessary for
mRNA translation initiation [8]. Rapamycin, a specific in-
hibitor of mTOR, signalling inhibits muscle protein syn-
thesis in humans after an oral load of essential amino acids
[25]. Key targets for mTOR activation include the 70-kDA
ribosomal protein S6 kinase (p70S6K) and the eukaryotic
initiation factor 4e-binding protein (4E-BP1) (see Fig. 1)
[26]. Ingestion of protein in the form of free amino
acids, milk protein or meat stimulates skeletal muscle
protein synthesis at rest which increases further with exer-
cise [27]. Postprandial muscle protein synthesis depends
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on the quantity and type of protein ingested. Activation of
mTOR pathway is markedly increased following the inges-
tion of essential amino acids, particularly leucine. Activa-
tion of protein synthesis after acute resistance training is
significantly reduced in the absence of essential amino
acids [28, 29]. Essential amino acids have been described
as ‘priming molecules’ whose phosphorylation of mTOR
at Ser2448 is a prerequisite for further phosphorylation
by Akt [26, 30]. Both leucine and AKt activate mTOR
through phosphorylation of the Ser 2448 site [26, 31].
The activation of translation initiation by essential amino
acids is independent of upstream IGF-1 signalling, with
mTOR acting as a convergence point for the separate
actions of amino acids and resistance exercise [26, 29].
Insulin increases muscle synthesis by multiple mecha-
nisms including increased AKT/mTOR signalling and
endothelial-dependent vasodilatation with an increase
in nutritive flow [32].
Whey protein accounts for about 20 % and casein com-

promises about 80 % of total milk protein [33]. Whey pro-
tein is a rich source of leucine (14 %) and branched chain
amino acids (26 %) [26]. The peak activation of muscle
protein synthesis is reported to be proportional to the leu-
cine content of the meal [34]. Whereas both casein and
whey contain all the amino acids required to effectively
stimulate muscle protein synthesis, whey has a consider-
ably higher leucine concentration and has been demon-
strated to have a greater postprandial muscle protein
synthetic response than casein or soy [27, 35, 36]. Whey
protein has been demonstrated to preserve muscle mass
during intentional weight loss in obese adults [37]. Whey
protein ingestion results in greater muscle protein synthe-
sis than ingestion of its constituent amino acid content
[38]. Bioactive peptides generated from whey protein have
been demonstrated to stimulate the release of several gut
hormones including cholecystokinin, peptide YY and the
incretins glucose-dependent insulinotropic polypeptide 1
(GIP-1) and glucagon-like peptide (GLP-1) that potentiate
insulin secretion [33, 39, 40]. In addition, these bioactive
peptides inhibit dipeptidyl peptidase-4 (DPP4) preventing
incretin degradation [33]. This may partly explain the
greater insulin response following whey protein com-
pared to casein [35]. In addition to its effects on protein
synthesis, whey protein may limit autophagy by increas-
ing activation of mTOR [41]. In a lipopolysaccharide
(LPS) sepsis model, Tsutsumi et al. demonstrated that
mice on a whey-based diet demonstrated improved sur-
vival with less mitochondrial autophagy and improved
mitochondrial bioenergetics compared to mice on a
casein-based diet [42]. Smith and colleagues demon-
strated that dietary omega-3 fatty acid supplementation
augments the hyperaminoacidemia–hyperinsulinemia-
induced increase in the rate of protein synthesis [43,
44]. While the mechanism of this effect is not clear, the
authors of this study demonstrated increased activation
of the mTOR-p70s6k signalling pathway without an ef-
fect on Akt signalling, suggesting increased activation at
the level of mTOR.

The kinetics of muscle protein synthesis
Optimal muscle protein synthesis requires a pulsatile in-
crease in branch-chain amino acids (particularly leucine)
with or without concomitant pulses in insulin levels. Pan-
creatic substrate clamp studies have demonstrated that
insulin and branch-chain amino acids independently in-
crease muscle synthesis with the effects of both being
additive [45, 46]. Animal data demonstrates that muscle
protein synthesis following a meal is rapid (within 30 min)
and sustained for about 2 h but then declines toward base-
line in parallel with the postprandial changes in circulating
insulin and amino acids [34, 47]. Bohe and colleagues
measured the latency and duration of the stimulation of
human muscle protein synthesis during a continuous infu-
sion of amino acids [48]. The rate of muscle protein syn-
thesis increased after 30 min and reached a peak at 2 h
rapidly returning to basal levels by 4 h despite continuous
amino acid availability. In healthy individuals at rest,
muscle protein synthesis displays a saturable effect which
has been termed the ‘muscle full’ effect [11, 49]. The syn-
thetic phase ends abruptly approximately 180 min after
the initial food bolus despite ongoing provision of amino
acids [10, 11]. Mitchell et al. have proposed a three-phase
postprandial muscle synthetic response [11]. After the on-
set of essential aminoacidemia, a latent period exists pro-
viding time for adequate intracellular essential amino acid
accumulation before muscle protein synthesis can be
switched on. After this latent period, a transient stimula-
tion in muscle protein synthesis lasting about 90 min oc-
curs before the onset of the ‘muscle full’ state restores
basal muscle protein synthesis despite sustained essential
amino acid availability. West et al. demonstrated that
myofibrillar protein synthesis after resistance exercise was
significantly greater after the consumption of a single 25-g
bolus dose of whey protein than when the whey protein
was given as small pulsed drinks (ten 2.5-g drinks every
20 min) [50]. These concepts are supported by the study
by Gazzaneo et al., who randomized neonatal pigs to
receive a whey protein diet given as intermittent boluses
(every 4 h) or as a continuous infusion for 24 h [51]. The
authors then measured the degree of activation of the
muscle anabolic pathways and the muscle protein syn-
thetic rate in both groups. The serum levels of branch-
chain amino acid and insulin levels spiked after each bolus
whereas these levels remained flat in the continuously fed
animals. Muscle protein synthesis 90 min after a bolus in
the intermittently fed animals was twice that of the con-
tinuously fed animals. Phosphorylation of AKT, p70S6K

and 4E-BP1 was significantly increased in the bolus fed
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group while these biomarkers were at basal levels in the
continuously fed animals.
The muscle synthetic response and the ‘muscle full’ ef-

fect are influenced by exercise, age, the type of protein
ingested and the anabolic/catabolic state of the individual
[8]. Decreased postabsorptive muscle protein synthesis
termed ‘anabolic resistance’ is common with aging and
may partly explain the sarcopenia of the elderly [8, 52]. In-
creased doses of protein and high-quality protein (whey)
appear to overcome age-related anabolic resistance [53]. A
20-g dose of whey protein is required for the maximal
myofibrillar synthetic rate in rested and exercised muscle
of resistance-trained, young men [54] while 40 g is require
in older adults [55]. Immobility [56–58], sepsis [59–61]
and inflammation [62] result in anabolic resistance. Vary
demonstrated that high dose leucine increases muscle
protein synthesis and overcomes anabolic resistance in a
murine sepsis model [63].
It is important to emphasize that the kinetics of muscle

protein synthesis, the comparison of intermittent versus
continuous supply of protein and the effect of whey- ver-
sus casein-based protein formula on protein synthesis
have not been studied in critically ill patients. However,
while the magnitude of the synthetic response may likely
be blunted in critically ill patients as compared to healthy
individuals, there is no physiological reason to believe that
the stereotypic pattern of muscle synthesis noted in
healthy individuals and animal models should not apply
to the critically ill patient. In combat troops, protein
dosing at a minimum of 20 g of high-quality protein
every 4–5 h (during waking hours) has been recom-
mended for optimal functional recovery [64]. While the
optimal protein dose and dosing strategy in critically ill
patients is unknown, I suggest that an approach similar
to that of combat troops may limit the loss of muscle in
these patients.

Clinical studies fail to demonstrate improved outcome
with more protein (provided continuously)
Four randomized controlled trials have been performed
comparing permissive underfeeding to full feeding or
standard feeding to ‘PepUp’ feeding [65–68]. None of
these trials demonstrated an improvement in any clinical
outcome by providing more calories and more protein.
The largest of these trials, the EDEN study randomized
patients (n = 1000) with acute lung injury to receive
either trophic feeding at 20 kcal/h (which is about 7 cal/
kg/day) or full feeding at 25–30 kcal/kg/day for the first
6 days (the average protein dose received in each group
was not reported!) [65]. After day 6, all patients who
were still receiving mechanical ventilation received the
full feeding protocol. There was no difference in the num-
ber of ventilator-free days (primary outcome), 60-day
mortality and other secondary end-points between groups.
Follow-up of these patients showed no difference in phys-
ical, psychological and cognitive function as well as quality
of life at 12 months [69, 70]. In the study by Arabi et al.,
hospital mortality was lower in the permissive under-
feeding group than in the target feeding group (30.0 %
vs 42.5 %; RR 0.71; 95 % CI: 0.50, 0.99; P = 0.04) [66]. In
all of these studies, patients were fed enterally with a
continuous supply of amino acids. The Early Parenteral
Nutrition Completing Enteral Nutrition in Adult Critic-
ally Ill Patients (EPaNIC) was a prospective RCT that
compared early with late initiation of parenteral nutrition
in ICU patients unable to tolerate adequate enteral nutri-
tion [71]. In a post hoc analysis of this study, Casear et al.
demonstrated a strong association between increasing cu-
mulative protein intake (given as a continuous infusion)
with a lower likelihood of an earlier alive-discharge from
the ICU [72]. I postulate that the negative outcomes of
these studies are related to the fact that the increased dose
of protein/amino acids were given as a continuous infu-
sion. It is noteworthy that in the study of Puthucheary and
colleagues (referenced above) a higher protein delivery
during the first week of critical illness was associated with
greater muscle wasting [13].

Intermittent vs continuous feeding
No species eats continuously (day and night) and such
an evolutionary design would seem absurd. The alimen-
tary tract and metabolic pathways of humans appear de-
signed for intermittent ingestion of nutrients a few times
a day. Humans have evolved, as intermittent meal eaters
are not adapted to a continuous inflow of nutrients; nor-
mal physiology appears to be altered when this approach
is adopted. However, continuous enteral feeding of crit-
ically ill patients appears to be the standard of care
around the world [73]; such an approach is clearly un-
physiological and likely to be associated with significant
complications. Rapid syringe bolus feeding was the norm
prior to the introduction of continuous infusion pumps.
Rapid bolus feeding was associated with sudden gastric
distension and a high incidence of nausea and vomiting.
Continuous feeding with an infusion pump was associ-
ated with less intolerance and soon become considered
the standard of care. However, when the ‘bolus’ of en-
teral feed is given over a longer period of time (20–40
min), the incidence of nausea and vomiting is not in-
creased [74]; this method of feeding is best referred to as
intermittent feeding.
In addition to adversely affecting protein synthesis, con-

tinuous enteral feeding has other adverse consequences
(see Table 1). The gastrointestinal tract is an important
endocrine organ with dozens of regulatory peptides being
produced by specialized endocrine cells within the gastro-
intestinal mucosa. These hormones serve complex roles
regulating gastrointestinal motility, gall bladder contraction,



Table 1 Potential harm associated with continuous tube feed

Organ system Potential adverse effect

Muscle Decreased skeletal muscle synthesis

Endocrine Decreased secretion of GIP, GLP-1, peptide YY and CCK

Decreased insulin release

Insulin resistance

Hyperglycemia

Gastrointestinal Hepatic steatosis

Hepatic inflammation

Enlarged non-contractile gall bladder

Impaired lipid absorption

Small bowel atrophy

Impaired small bowel function

Decreased mesenteric blood flow

Other Multi-organ dysfunction syndrome

GIP glucose-dependent insulinotropic polypeptide, GLP-1 glucagon-like
peptide-1, CCK cholecystokinin
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pancreatic function and nutrient absorption [75]. The
majority of these hormones are secreted within minutes
of nutrient ingestion and rise transiently in the
circulation with levels falling back to basal levels after
termination of feeding. This entero-hormonal response
to nutrient ingestion is almost completely abolished
following continuous tube feeding. The incretins, glucose-
dependent insulinotropic polypeptide (GIP) and glucagon-
like peptide-1 (GLP-1) play an important role in the
coordinated response to the incoming carbohydrate load
[75]. Both these hormones potentiate insulin secretion
from the islet-β cell in a glucose-dependent manner and
account for up to 70 % of insulin release [76, 77]. Stoll
et al. studied the kinetics of incretin release and gastro-
intestinal function in neonatal pigs who received continu-
ous or intermittent enteral feeding [78]. In this study,
blood GIP and GLP-1 levels as well as insulin receptor
phosphorylation in liver and muscle were significantly re-
duced in the continuously fed as compared to the inter-
mittently fed animals. Furthermore, ileal mass and villus
height were significantly less while hepatic steatosis and
hepatic inflammation were significantly greater in the con-
tinuously fed animals. Similarly, Shulman et al. compared
bolus versus continuous tube feedings on small-intestinal
growth and development in newborn pigs [79]. In this
study, small-intestinal mucosal weight, ileal protein mass
and mucosal enzymatic activity were significantly less in
the continuously fed animals. In a randomized crossover
study, Chowdhury et al. compared bolus with continuous
nasogastric feeding in healthy human adults [80]. In this
study, bolus feeding led to a significant increase in mesen-
teric artery blood flow and an increase in the concentration
of insulin and peptide YY; these variables remained virtu-
ally flat in the continuously fed group. Furthermore, the
mean blood glucose concentration was significantly
lower in the bolus fed group over the 4-h study period
(P < 0.0001). It should be noted that GLP-1 results in
skeletal muscle microvascular recruitment with in-
creased blood flow [81, 82] and nutrient delivery and
this may play a role in the coordinated postprandial
muscle synthetic response as already discussed. Recent
studies have demonstrated that there are GLP-1 recep-
tors on many organs and tissues including the kidney,
brain and heart and that GLP-1 has neuro-protective,
cardio-protective, reno-protective and anti-inflammatory
properties [77, 83, 84]. It is possible that the blunted re-
lease of GLP-1 may contribute to organ dysfunction in
continuously fed critically ill patients. Intermittent oral
feeding results in pulsatile cholecystokinin (CCK) release
with gall bladder emptying whereas continuous enteral
feeding results in a blunted CCK response and an enlarged
non-contractile gall bladder [85, 86]. Impaired release of
bile may result in impaired lipid absorption and diarrhoea
commonly noted in the critically ill. Furthermore, im-
paired gall bladder contractility may account for the high
incidence of acalculous cholecystitis which occurs in this
patient population [87].
Based on these data, I suggest that it is illogical to feed

patients with a continuous infusion of enteral nutrition
(a parenteral infusion would be more illogical). A limited
number of studies have been performed comparing con-
tinuous to intermittent enteral nutrition [74, 88, 89].
While these studies did not evaluate patient centered out-
comes such as mortality, ventilator-free days, muscle func-
tion or metabolic parameters they demonstrated that this
approach is both safe and feasible. MacLeod and col-
leagues randomized 164 trauma patients to an intermit-
tent feeding regimen (one-sixth of daily needs infused
every 4 h) or a continuous feeding regimen [74]. The
intermittent feed was delivered via an enteral feeding
pump over a 30- to 60-min period of time. These investi-
gators reported no difference in the complication rate be-
tween groups (diarrhoea and pneumonia); however, the
caloric goal was achieved earlier in the intermittently fed
patients. We currently have experience with feeding over
300 patients by the intermittent method. This feeding
technique has been very well tolerated by our patients
with no evidence of an increase in the risk of aspiration or
diarrhoea. Compared to historical controls, our data sug-
gests that glycemic control improves with intermittent
feeding (significantly lower percentage of patients with
blood glucose >180 mg/dl). Due to the improved gastro-
intestinal tolerance, improved glycemic control, perceived
clinical benefits and ease of administration, intermittent
bolus feeding is preferred over continuous feeding by our
ICU nursing staff and dieticians. It should be noted that
the intermittent boluses are given using an enteral feeding
pump over a 20- to 40-min period. While the optimal



Table 2 Intermittent feeding schedule

Time (h) Volume (ml) Duration of infusion (min)

0 100 20

4 150 20

8 150 20

12 200 30

16 200 30

20 250 40

24 Target
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amount of calories and protein that should be given with
the intermittent approach is unknown, we target 20–25
cal/kg/day divided into 6 aliquots given every 4 h. We use
a whey-based formula (with omega-3 fatty acids) with a
caloric density of 1.2 calories/ml with an average target of
1800 calories (250 ml q 4 hr). The protocol for escalation
of intermittent feeds is provided in Table 2.
It is my opinion that continuous enteral nutrition is

unphysiological, limits preservation of muscle mass and
is associated with adverse effects on glucose and lipid me-
tabolism and that this approach to nutritional support
should be abandoned. Experimental and clinical studies
have shown that ‘mechanical silencing’ of skeletal muscle
plays a major role in CIM [56, 90]. Loss of muscle mass
and function can be attenuated by early mechanical load-
ing [91, 92], supporting early physical therapy in immobi-
lized patients [93–95]. It is therefore my belief that
optimal nutritional support provided by intermittent feed-
ing of a whey-based enteral formula combined with early
physical therapy may attenuate CIM.
Conclusions
In conclusion, I believe that critically ill patients should
be fed intermittently with a whey-based formula which
contains omega-3 fatty acids. Such an approach is likely
to limit muscle atrophy and promote metabolic stability.
Continuous tube feeding is unphysiological and likely
harmful and should be abandoned. Large randomized
controlled trials are urgently required to demonstrate
the clinical benefits of an intermittent feeding strategy.
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