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Abstract 

Background:  Mesenchymal stem cells (MSC) obviously alleviate the damage of the structure and function of pul‑
monary vascular endothelial cells (VEC). The therapeutic effects of MSC are significantly different between pulmonary 
ARDS (ARDSp) and extrapulmonary ARDS (ARDSexp). MicroRNAs (miRNAs), as important media of MSC regulating 
VEC, are not studied between ARDSp and ARDSexp. We aimed to explore the plasma levels difference of miRNAs that 
regulate VEC function and are associated with MSC (MSC-VEC-miRNAs) between ARDSp and ARDSexp patients.

Methods:  MSC-VEC-miRNAs were obtained through reviewing relevant literatures screened in PubMed database. We 
enrolled 57 ARDS patients within 24 h of admission to the ICU and then collected blood samples, extracted plasma 
supernatant. Patients’ clinical data were collected. Then, plasma expression of MSC-VEC-miRNAs was measured by 
real-time fluorescence quantitative PCR. Simultaneously, plasma endothelial injury markers VCAM-1, vWF and inflam‑
matory factors TNF-α, IL-10 were detected by ELISA method.

Results:  Fourteen miRNAs were picked out after screening. A total of 57 ARDS patients were included in this study, 
among which 43 cases pertained to ARDSp group and 14 cases pertained to ARDSexp group. Plasma miR-221 and 
miR-27b levels in ARDSexp group exhibited significantly lower than that in ARDSp group (miR-221, 0.22 [0.12–0.49] 
vs. 0.57 [0.22–1.57], P = 0.008, miR-27b, 0.34 [0.10–0.46] vs. 0.60 [0.20–1.46], P = 0.025). Plasma vWF concentra‑
tion in ARDSexp group exhibited significantly lower than that in ARDSp group (0.77 [0.29–1.54] vs. 1.80 [0.95–3.51], 
P = 0.048). Significant positive correlation was found between miR-221 and vWF in plasma levels (r = 0.688, 
P = 0.022). Plasma miR-26a and miR-27a levels in non-survival group exhibited significantly lower than that in survival 
group (miR-26a, 0.17 [0.08–0.20] vs. 0.69 [0.24–2.33] P = 0.018, miR-27a, 0.23 [0.16–0.58] vs. 1.45 [0.38–3.63], P = 0.021) 
in ARDSp patients.

Conclusion:  Plasma miR-221, miR-27b and vWF levels in ARDSexp group are significantly lower than that in ARDSp 
group. Plasma miR-26a and miR-27a levels in non-survival group are significantly lower than that in survival group in 
ARDSp patients.
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Background
Acute respiratory distress syndrome (ARDS) is a com-
mon critical disease in intensive care unit (ICU). In 

recent years, although mechanical ventilation, liquid 
management, extracorporeal membrane oxygenation and 
other therapeutic technologies have improved signifi-
cantly, ARDS is associated with high morbidity and mor-
tality in critically ill patients [1]. Endothelial dysfunction 
is a key characteristic of ARDS, giving rise to increasing 
vascular permeability and then pulmonary edema and 
respiratory failure [2, 3]. The biological underpinnings 
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manipulating the development of endothelial dysfunction 
in ARDS are incompletely cognized and represent the 
inevitable course to precision diagnosis and treatment.

Patients with ARDS which is a heterogeneous syn-
drome have variant etiologies and pathologies and 
respond differently to therapeutic interventions [4]. One 
approach to reducing ARDS heterogeneity is to subclas-
sify patients as ARDSp (originating from pulmonary 
disease) or ARDSexp (originating from extrapulmonary 
disease) [5]. In the early stages of ARDS, there were sig-
nificant differences in damage degree of endothelial cells 
between ARDSp and ARDSexp [6, 7]. When lung mor-
phology was analyzed by computed tomography (CT), 
ARDSp was characterized by prominent consolidation, 
while ARDSexp was characterized by prominent ground-
glass opacification [8]. The two subtypes of ARDS 
respond differently to therapeutic interventions such as 
alterations in positive end-expiratory pressure, prone 
ventilation, and recruitment maneuvers [9–13]. Never-
theless, the underlying mechanism governing this differ-
ence needs further research.

Mesenchymal stem cells (MSC), protecting adherens 
junction (VE-cadherin and β-catenin), reducing the lung 
endothelial cell apoptosis, improve pulmonary vascular 
endothelial cells (VEC) permeability of ARDS [14–18]. 
However, the therapeutic effects of MSC are significantly 
different between ARDSp and ARDSexp [19]. This is 
similar to bone marrow-derived mononuclear cell more 
effectively improving survival, lung mechanics and his-
tology in ARDSexp than these in ARDSp [20]. The mech-
anism of difference is not entirely clear.

MicroRNAs (miRNAs), a group of small (19–25 
nucleotides) non-coding segments of RNA, regulate 
gene expression by binding to target mRNA to inhibit 
their translation. MiRNAs also play an important role 
in the regulation of gene expression in the pathogenesis 
of ARDS. Previous studies [21, 22] showed that MSC 
control activity of pulmonary VEC through regulat-
ing microRNAs (miRNAs) levels. Herein, we tentatively 
defined MSC-VEC-miRNAs as a group of miRNAs which 
are associated with MSC, have regulatory effects on VEC 
and have previously been studied in ARDS. Then, levels 
of MSC-VEC-miRNAs can be different in patients with 
ARDSp and ARDSexp.

Yet, so far, no study has tested whether MSC-VEC-
miRNAs may serve as biomarkers distinguish between 
ARDSp and ARDSexp. In this study, 14 MSC-VEC-
miRNAs were filtrated through relevant literatures. Fur-
ther, we have examined the expression levels of these 
MSC-VEC-miRNAs in plasma collected from patients 
diagnosed as ARDSp and ARDSexp. Our purpose is to 
explore the plasma levels difference of MSC-VEC-miR-
NAs between ARDSp and ARDSexp which is probably 

helpful for the study in pathogenesis and clinical diagno-
sis of ARDSp and ARDSexp.

Methods
Screening of MSC‑VEC‑miRNA
Using the combination of keywords and MeSH terms for 
“endothelial cell” and “microRNA”, we searched PubMed 
for articles that describe associations between the miR-
NAs and endothelial cell. Each article was reviewed and 
associated miRNAs (“miRNAs cluster 1”) were recorded. 
Then, we searched each miRNA in “miRNAs cluster 1” 
individually in conjunction with mesenchymal stromal 
cell (e.g., “miR-21” and “mesenchymal stromal cell”) and 
reviewed each article to get miRNAs (“miRNAs clus-
ter 2”) associated with mesenchymal stromal cell from 
“miRNAs cluster 1”. Using the same method, we obtained 
MSC-VEC-miRNAs, eligible microRNAs that were asso-
ciated with MSC, has regulatory effects on VEC and has 
previously been studied in ARDS (Additional file 1: Table 
S1).

Subject recruitment and sample acquisition
All new ICU admissions at Zhongda Hospital Affili-
ated to Southeast University from January 2016 to Sep-
tember 2016 were screened for the presence of ARDS 
based on acute respiratory distress syndrome: the Berlin 
Definition [23]. Additional inclusion criteria included 
18  years ≤  age ≤  89  years and admission into the ICU 
within the previous 24 h. We excluded immunocompro-
mised patients including history of stem cell transplant, 
immunosuppressive medication using and excluded 
patients with malignant tumor and pregnant women.

After signing informed consent, subjects had blood 
drawn via venipuncture or from pre-existing intravascu-
lar catheters. Blood samples from enrolled patients were 
obtained within 24  h of admission to the ICU. Samples 
were centrifuged at 1900g for 10  min, and the plasma 
supernatant was extracted and stored in refrigeratory at 
− 80 degrees Celsius.

Patients data collection
Demographic and clinical data from eligible patients was 
abstracted from the electronic medical record. Demo-
graphic data: gender, age, actual height, actual weight, 
etc. Patient’s condition: main diagnosis, acute physiol-
ogy and chronic health evaluation (APACHE) II scores, 
sequential organ failure assessment (SOFA) scores, 
ARDS etiology. ARDS severity: arterial blood PO2/FiO2 
ratio, Murray lung injury score. The style of oxygen ther-
apy and parameters: noninvasive ventilation, invasive 
ventilation and ventilator parameters. Clinical outcomes: 
ICU and hospital length of stay, 28-day mortality, occur-
rence of shock (defined by clinician), occurrence of acute 
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kidney injury [KDIGO Clinical Practice Guideline for 
Acute Kidney Injury].

RNA isolation
The frozen plasma was taken out from refrigeratory and 
incubated at 37 °C in a water bath until samples are com-
pletely thawed. Prolonged incubation should be avoided, 
which may compromise RNA integrity. RNAs were iso-
lated from plasma samples using miRNeasy serum/
plasma kits (Qiagen). The miRNeasy Serum/Plasma 
Spike-In Control, a Caenorhabditis elegans miR-39 
miRNA mimic, was chosen as the normalized internal 
control. 3.5 μl miRNeasy Serum/Plasma Spike-In Control 
(1.6 × 108 copies/μl working solution) was added to the 
tube containing the lysate before adding chloroform in 
the RNA extraction process.

Real‑time PCR
After total RNA isolation, quantitative real-time PCR 
(qRT-PCR) was performed with a miScript System (Qia-
gen, USA). All procedures were performed according to 
the instructions provided by the manufacturer. Reverse 
transcription (RT) was done in a reaction component 
of 20  μl, which contained 2  μl miScript Reverse Tran-
scriptase Mix, 2 μl miScript Nucleics Mix, 4 μl miScript 
HiSpec Buffer, a certain volume of template RNA con-
taining 100  ng total RNA and a little RNase-free water 
increasing reaction volume to 20  μl. The mixture was 
incubated 37 °C for 60 min and 95 °C for 5 min. The 20 μl 
RT product was diluted into 100  μl. Reaction system of 
quantitative real-time PCR contained 10 μl SYBR Green 
PCR Master Mix, 2 μl miScript specific primer, 2 μl miS-
cript universal primer, 2  μl cDNA and 4  μl RNase-free 
water. qRT-PCR used an Applied Biosystems StepOne 
detection system at 95  °C for 15  min, followed by 40 
cycles of 95 °C for 15 s, 55 °C for 30 s, 70 °C for 30 s. All 
qRT-PCRs were performed in triplicate, and the raw Ct 
(threshold cycle) of each sample was the mean value of 
three Ct values. The data were analyzed by the 2−ΔΔCT 
method.

Statistical analysis
Baseline characteristics and clinical condition indica-
tor of human subjects were compared between ARDSp 
and ARDSexp. Expression levels of selected miRNAs 
detected by qRT-PCR were normalized to miR-39 and 
analyzed using the 2−ΔΔCT method. Results for nor-
mally distributed continuous variables are presented as 
mean ± SD and compared between groups by Student’s 
t tests. Results for non-normally distributed continu-
ous variables are summarized as medians [interquartile 
ranges] and were compared by Mann–Whitney U tests. 
Results for categorical variables are presented as sample 

rate (constituent ratio) and were compared Chi-squared 
test or Fisher exact test. Logistic regression analysis was 
carried out to determine the variables that were associ-
ated independently with the death of ARDSp patients. 
We examined whether miR-26a and miR-27a were inde-
pendent risk factors for the death after adjustment for 
age and APACHE II score. All tests were two-sided, and P 
values < 0.05 were considered statistically significant.

Results
Screening result of MSC‑VEC‑miRNA
Fourteen miRNAs were picked out which include miR-
15a, miR-16, miR-21, miR-24, miR-26a, miR-27a, miR-
27b, miR-126, miR-146a, miR-150, miR-155, miR-221, 
miR-223, miR-320. Relevant references were presented 
with PubMed Unique Identifier in Additional file 2: Table 
S2. The detail information of these miRNAs is shown in 
Table 1.

General characteristics of the patients with ARDS
A total of 101 patients admitted to the ICU of Zhongda 
Hospital Affiliated to Southeast University from Janu-
ary 2016 to September 2016; diagnosed ARDS were 
inspected. Ultimately, 44 patients were excluded (30 
malignant tumor patients, six patients administered glu-
cocorticoid in the past 6 months, five patients older than 
90  years old and three pregnant women). Fifty-seven 
were included in the study: 43 cases in ARDSp group and 
14 cases in ARDSexp group. Age, BMI, APACHE II score, 
SOFA score, lactic acid, 28-day mortality rate had no sta-
tistical difference (P  >  0.05) between ARDSp and ARD-
Sexp. General data of the 57 ARDS are listed in Table 2.

Comparison of patient’s clinical condition indexes 
between ARDSp and ARDSexp
Indicators from clinical monitoring and laboratory detec-
tion were compared between ARDSp and ARDSexp. 
Oxygenation index (PO2/FiO2) in ARDSp was lower 
than that in ARDSexp (145 [119–203] vs. 206 [184–253], 
P  =  0.012). Murray lung injury score in ARDSp was 
significantly higher than ARDSexp (2.7 [2–3.3] vs. 1.8 
[1.3–2.4], P  =  0.008). FiO2 and PEEP had no statisti-
cal difference between ARDSp and ARDSexp (P > 0.05). 
The proportion of ECMO, CRRT and invasive mechani-
cal ventilation treatment had no statistical difference 
between ARDSp and ARDSexp (P > 0.05). Indexes related 
to infection and shock had no statistical difference 
between two groups (P > 0.05) (Table 3).

Comparison of plasma MSC‑VEC‑miRNAs levels 
between ARDSp and ARDSexp
Plasma miR-221 and miR-27b levels in ARDSexp group 
exhibited significantly lower than that in ARDSp group 
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Table 1  Summary of candidate MSC-VEC-miRNAs Regulation in vascular endothelial cells

miR: microRNA, −: Negative regulation, +: Positive adjustment

MiRNAs Function on angiogenic process Gene targets Adjusting direction

miR-15a Inhibits angiogenesis through direct targeting of VEGF and FGF FGF2, FGFR1, VEGF, VEGFR2 –

miR-16 Inhibits tumor angiogenesis and EC-mediated angiogenesis in vitro and in vivo FGF2, FGFR1, VEGF, VEGFR2 –

miR-21 Induces tumor angiogenesis in vitro PTEN +
miR-24 Decreases endothelial cell proliferation Sp1 –

miR-26a Prevents endothelial cell apoptosis TRPC6 +
miR-27a Promotes EC angiogenesis in vitro SEMA6A, Spry2, Dll4 +
miR-27b Promotes EC angiogenesis in vitro SEMA6A, Spry2, Dll4 +
miR-126 Promotes EC angiogenesis in vitro and in vivo Spred-1, PIK3R2, VCAM-1 +
miR-150 Restores vascular barrier function Ang2 +
miR-146a Promotes senescence of endothelial cells NOX4 –

miR-155 Promotes tumor angiogenesis VHL +
miR-221 Inhibits EC-mediated angiogenesis in vitro c-kit, eNOS –

miR-223 Prevents endothelial cell proliferation β1 integrin, IGF-1R –

miR-320 Inhibits diabetic angiogenesis in vitro IGF-1 –

Table 2  General data comparison between ARDSp and ARDSexp

BMI body mass index, COPD chronic obstructive pulmonary disease, ARDS acute respiratory distress syndrome, AKI acute kidney injury, APACHE acute physiology 
and chronic health evaluation, SOFA sequential organ failure assessment, CHD coronary heart disease, CVD cerebrovascular disease, DM diabetes mellitus, HBD 
hepatobiliary diseases, ISD immune system disease, PI pulmonary infection, PC pulmonary contusion, EPT extrapulmonary trauma

Variable Total (n = 57) ARDSp(1) (n = 43) ARDSexp(2) (n = 14) P value (1) versus (2)

General condition

Age (years) 59.0 ± 17.5 56.6 ± 20.4 63.7 ± 12.6 0.13

Male n (%) 41 (71.9%) 30 (69.8%) 11 (78.6%) 0.52

BMI 23.9 ± 3.6 24.0 ± 3.8 23.6 ± 3.0 0.70

APACHE II score 21.3 ± 8.4 21.8 ± 8.5 20.0 ± 8.4 0.50

SOFA score 10.4 ± 4.9 10.4 ± 4.6 10.3 ± 5.7 0.93

28-day mortality 18 (31.6%) 14 (32.6%) 4 (22.2%) 1.00

Basic diseases

COPD n (%) 1 (1.8%) 0 (0%) 1 (7.1%) 0.25

Hypertension n (%) 16 (28.1%) 13 (30.2%) 3 (21.4%) 0.77

CHD n (%) 8 (14.0%) 7 (16.3%) 1 (7.1%) 0.68

CVD n (%) 8 (14.0%) 8 (18.6%) 0 (0%) 0.19

DM n (%) 12 (21.1%) 10 (23.3%) 2 (14.3%) 0.74

HBD n (%) 7 (12.3%) 1 (2.3%) 6 (42.9%) 0.001

ISD n (%) 0 (%) 0 (%) 0 (%) 1.00

ARDS etiology

PI n (%) 36 (63.2%) 36 (83.7%) 0 (0%) < 0.001

Inhalation n (%) 3 (5.3%) 3 (7.0%) 0 (0%) 0.57

PC n (%) 4 (7.0%) 4 (9.5%) 0 (0%) 0.515

Sepsis n (%) 3 (5.3%) 0 (0%) 3 (20%) 0.016

Pancreatitis n (%) 4 (7.0%) 0 (0%) 4 (26.7%) 0.004

EPT n (%) 5 (8.8%) 0 (0%) 5 (33.3%) 0.001

Others n (%) 2 (3.5%) 0 (0%) 2 (14.3%) 0.057

Organ dysfunction

Septic shock n (%) 22 (38.6%) 17 (39.5%) 5 (35.7%) 0.23

AKI n (%) 14 (24.6%) 10 (23.3%) 4 (28.6%) 0.97
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(0.22 [0.12–0.49] vs. 0.57 [0.22–1.57], P =  0.008), (0.34 
[0.10–0.46] vs. 0.60 [0.20–1.46], P  =  0.025). Other 12 
kinds of plasma miRNAs levels between two groups 
showed no statistical difference. Plasma levels of MSC-
VEC-miRNAs between ARDSp and ARDSexp are shown 
in Fig. 1.

Comparison of plasma vWF, VCAM‑1, IL10, TNFα 
concentration between ARDSp and ARDSexp
Plasma vWF concentration in ARDSexp group exhibited 
significantly lower than that in ARDSp group (0.77 [0.29–
1.54] vs. 1.80 [0.95–3.51], P = 0.048). However, VCAM-1, 
IL10, TNFα concentration between two groups showed 
no statistical difference. Plasma concentration of VCAM-
1, IL10, TNFα between ARDSp and ARDSexp is shown 
in Fig. 2.

The correlation of plasma levels between miR‑27b/miR‑221 
and vWF
As plasma miR-27b/miR-221 and vWF levels were signif-
icant different between ARDSp and ARDSexp groups, we 
analyzed the correlation of plasma levels between miR-
27b/miR-221 and vWF. We found significant positive 
correlation between miR-221 and vWF in plasma levels 
(r = 0.688, P = 0.022). However, there was no significant 
correlation between miR-27b and vWF in plasma levels 
(Fig. 3).

Comparison of plasma patient’s clinical illness condition 
data between survival and non‑survival group in ARDSp 
patients
APACHE II score, SOFA score, P/F, Murray score, CRP, 
Lactic acid were used as common indicators to evalu-
ate ARDS patients’ clinical illness condition. This study 
showed that APACHE II score, SOFA score and lactic 
acid in survival group were significantly lower than that 
in non-survival group (APACHE II score: 18.7 ± 7.6 vs. 
28.1 ± 7.6, P<0.001; SOFA score: 8.8 ± 4.1 vs. 14.0 ± 3.8, 
P<0.001; lactic acid: 1.7 [0.9–2.2] vs. 2.9 [1.2–3.3], 
P  =  0.015) in ARDSp patients. P/F, Murray score and 
CRP between two groups showed no statistical difference 
(Table 4).

Comparison of plasma MSC‑VEC‑miRNAs levels 
between survival and non‑survival group in ARDSp 
patients
In our research, extrapulmonary ARDS was caused by 
sepsis, pancreatitis, extrapulmonary trauma etc. We just 
analyzed plasma MSC-VEC-miRNAs and vWF, VCAM-1, 
IL10, TNFα levels between 28 days survival and 28 days 
non-survival group in ARDSp patients in order to reduce 
the heterogeneity between patients. Plasma miR-26a and 
miR-27a levels in non-survival group exhibited signifi-
cantly lower than that in survival group (miR-26a: 0.17 
[0.08–0.20] vs. 0.69 [0.24–2.33] P = 0.018; miR-27a: 0.23 

Table 3  Comparison of patient’s clinical condition indexes between ARDSp and ARDSexp

PH arterial blood pH value, PO2 arterial partial pressure of oxygen, FiO2 oxygen concentration, PEEP positive end expiratory pressure, Murray score lung injury score 
used for ARDS patients, CRP C reactive protein, PCT procalcitonin, IMV invasive mechanical ventilation, ECMO extracorporeal membrane oxygenation, CRRT continuous 
renal replacement therapy, HR heart rate, NE norepinephrine. P < 0.05 suggests statistical difference

Variable Total (n = 57) ARDSp(1) (n = 43) ARDSexp(2) (n = 14) P value (1) versus (2)

Lung injury severity

PH 7.4 [7.35–7.45] 7.41 [7.36–7.46] 7.37 [7.32–7.43] 0.26

FiO2 0.5 [0.4–0.6] 0.5 [0.4–0.6] 0.4 [0.4–0.5] 0.06

PEEP(cmH2O) 8 [5–12] 8 [5–12] 5 [5–12] 0.54

PO2/FiO2(mmHg) 165 [112–211] 145 [110–203] 206 [184–253] 0.012

Murray score 2.3 [1.7–3.1] 2.7 [2–3.3] 1.8 [1.3–2.4] 0.008

Infection index

Leukocyte count 10.4 [6–16.7] 10.4 [6.4–14.5] 11.8 [5.5–18.3] 0.81

Platelet count 134 [90–188] 134 [107–195] 128 [49–184] 0.38

CRP 74 [25–128] 74 [31–121] 75 [15–141] 0.87

PCT 1.3 [0.2–12.9] 1. 0 [0.2–13.1] 1.86 [0.7–10.4] 0.60

Shock index

HR 73 [63–121] 72 [63–120] 76 [63–125] 0.66

NE 5 [0–27.5] 4 [0–20] 5 [0–85] 0.21

Lactic acid 2.1 [1–3.1] 2.0 [0.9–2.9] 2.2[1.2–5.4] 0.11

Organ supporting

IMV n (%) 40 (70.2%) 32 (74.4%) 8 (57.1%) 0.37

ECMO n (%) 12 (21.1%) 12 (27.9%) 0 (0%) 0.065

CRRT n (%) 10 (17.5%) 7 (16.3%) 3 (21.4%) 0.97
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[0.16–0.58] vs. 1.45 [0.38–3.63], P  =  0.021) in ARDSp 
patients. Other 12 kinds of miRNAs and vWF, VCAM-1, 
IL10, TNFα levels in plasma between two groups showed 
no statistical difference (Figs. 4, 5).

The predictive value of miR‑26a and miR‑27a for prognosis 
of ARDSp patients
As APACHE II score, SOFA score, lactic acid, miR-
26a and miR-27a were significantly different between 
non-survival and survival groups in ARDSp patients, 
ROC curves were drawn and the area under the curve 
(AUC) values for APACHE II score, SOFA score, lac-
tic acid, miR-26a and miR-27a were, respectively, 0.808 
(95%CI: 0.673–0.943), 0.828 (95%CI: 0.693–0.962), 
0.782 (95%CI: 0.564–0.897), 0.787 (95%CI: 0.650–0.925), 
0.782 (95%CI: 0.650–0.918) (Fig. 6). We also divided the 
patients into two groups according to median miR-26a 

or miR-27a value. Survival curve analysis showed that 
ARDSp patients with lower concentration of miR-26a/
miR-27a had higher mortality (Fig.  7). Tables  5 and 6 
show the results of the multivariate logistic regression 
analysis for the death of ARDSp patients. MiR-26a (OR: 
1.483, 95% CI: 0.999–2.200, P  =  0.050), miR-27a (OR: 
1.425, 95% CI: 1.008–2.015, P =  0.045) were may inde-
pendently associated with the death of ARDSp patients.

Discussion
The results of this study demonstrate that the expres-
sion of plasma miR-221, miR-27b and endothelial mark-
ers vWF is significantly different between ARDSp and 
ARDSexp patients. Plasma miR-26a and miR-27a lev-
els showed significantly different between non-survival 
group and survival group in ARDSp patients.
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Fig. 1  Comparison of MSC-VEC-miRNAs between ARDSp and ARDSexp. Data presented as a relative fold change between ARDSp and ARDSexp for 
each miRNA. Box plots are displayed where the horizontal bar represents the median, the box represents the IQR, and the whiskers represent the 
maximum and minimum values. Comparisons made by Mann–Whitney U test. miRNA microRNA, IQR interquartile range
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The characteristics of the enrolled patients in this 
study may impact research results. The ARDSp patients 
are more serious than the ARDSexp patients in the 
local lung injury and lung function lesion. The ARDSp 
patients owned higher Murray lung injury score and 
lower PO2/FiO2 than the ARDSexp patients and included 
all 12 patients received ECMO treatment. But indicators 

related to the overall illness condition, such as APACHE 
II scores, SOFA scores, blood lactate levels, doses of 
norepinephrine and the proportion of complicating 
sepsis, septic shock, AKI showed no statistical differ-
ence between ARDSp and ARDSexp patients. There was 
no difference in the 28-day mortality between the two 
groups, probably because the overall illness condition 
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had no difference between the two groups. Therefore, the 
survival rate depends on overall illness severity or, say, 
the systematic condition of the whole organ rather than 

single organ lesions. We should pay attention to primary 
disease treatment and, meanwhile, systematic organ 
maintenance to prevent multiple organ dysfunction on 
critically ill patients.

In our study, pulmonary vascular endothelium lesion 
in ARDSp patients may be more serious than that in 
ARDSexp patients which embody in Murray lung injury 
score and PO2/FiO2. The result is in agreement with the 
previous research [24–26]. Previous studies show that 
miR-27b promotes vascular endothelial cell angiogenesis, 
yet miR-221 inhibits vascular endothelial cell-mediated 
angiogenesis. So, we deem ARDSp patients will express 
higher levels of miR-221 and, conversely, express reduced 
levels of miR-27b than ARDSexp patients. However, our 
research shows that plasma miR-221 and miR-27b levels 

Table 4  Comparison of  patient’s clinical illness condition 
data in ARDSp patients

Variable Survival (n = 29) Non-survival (n = 14) P value

APACHE II score 18.7 ± 7.6 28.1 ± 7.6 < 0.001

SOFA score 8.8 ± 4.1 14.0 ± 3.8 < 0.001

P/F(mmHg) 150 [113–203] 130 [100–195] 0.39

Murray score 2.6 [2.0–3.0] 3.0 [2.3–3.7] 0.09

CRP 73.7 [31.0–111] 91.3 [33.3–121] 0.76

Lactic acid 1.7 [0.9–2.2] 2.9 [1.2–3.3] 0.015
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Fig. 4  Comparison of MSC-VEC-miRNAs between survival group and death group in ARDSp patients. Data presented as a relative fold change 
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in ARDSexp group exhibited significantly lower than that 
in ARDSp group which is inconsistent with expected 
results. We reviewed forepassed clinical researches and 
acquired contradictory results with each other. Signifi-
cant increase in miR-27b expression was observed in the 
serum samples of patients with peripheral artery disease 
and arteriosclerosis obliterans when compared to the 
controls [27, 28]. Coskunpinar et  al. [29] reported an 
increased plasma expression level of miR-221 in acute 
myocardial infarction compared with healthy controls. 
However, Tsai et  al. presented that stroke patients and 
atherosclerosis subjects had significantly lower miR-221 
serum levels than healthy controls [30]. These conclu-
sions give us a hint that the expression of miRNAs is 
complex in different diseases originating from the similar 
pathological change.

Meanwhile, this research explored endothelial mark-
ers vWF, VCAM-1 and inflammatory cytokines IL10, 
TNFα. Plasma vWF concentration in ARDSexp group 
exhibited significantly lower than that in ARDSp group; 
however, plasma VCAM-1, IL10, TNFα concentration 
showed no statistical difference between two groups. 
As far as we know, endothelium can release vWF which 

forms additional links between the platelets’ glycopro-
tein and the collagen fibrils. To a certain extent, elevated 
vWF concentration reflected vascular endothelium 
lesion. But there was much controversy as to whether 
vWF could serve as a biomarker for ARDS. VWF is 
considered as in  vivo and in  vitro marker of endothe-
lial injury in patients with ARDS [31]. It has previously 
been reported that high plasma level of vWF was asso-
ciated with a greater risk of developing ARDS in sep-
sis patients and was associated with higher mortality 
in patients with established ARDS [31–34]. It also was 
reported that plasma levels of vWF did not appear to 
serve as useful markers for predicting ARDS in patients 
at risk and mortality in ARDS patients [35–37]. The vWF 
studies in ARDSp and ARDSexp are rare. Calfee et  al. 
[38] reported that plasma vWF levels were significantly 
lower in ARDSp than that in ARDSexp which was not 
consistent with our result. It may be because patients in 
ARDSexp group were severer with higher APACHE III 
score and mortality in this study which was not consist-
ent with our research, too. Upregulation of VCAM-1 in 
endothelial cells by cytokines partly occurs as a result of 
increased gene TNFα transcription. So, in our results, 
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VCAM-1 and TNFα change in the same direction. In our 
study, leukocyte count, PCT, CRP showed no statistical 
difference between two groups, which is consistent with 
the change direction of IL10, TNFα.

Significant positive correlation between miR-221 and 
vWF in plasma levels was found in our study. Circulating 
is mostly released constitutively from endothelial storage 
organelles, Weibel–Palade bodies (WPBs) [39, 40]. WPBs 
are released from endothelial cells in response to a large 
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Fig. 7  Probability of survival and subgroup analyses of the risk of death at 28 days

Table 5  Multivariable analysis (miR-26a included) of  the 
death of ARDSp patients

Odds ratio 95% CI P value

(Intercept) 3931.707 – 0.004

Age 0.959 0.908–1.013 0.133

APACHE II score 0.791 0.679–0.921 0.003

miR-26a 1.483 0.999–2.200 0.050
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number of agonists which include two distinct groups: 
those that act by elevating intracellular calcium ion (Ca2+) 
levels and those that act by raising cAMP levels in the cell 
[41–44]. Xiang et al. [45] identified that miR-24 and miR-
335 targeted human vWF 3’UTR. Previous studies with 
regard to miR-221 regulating vWF production are absent. 
However, miR-221 increases free Ca2+ level of mast cells 
by PI3 K/Akt/PLCγ/Ca2+ signaling pathway [46]. MiR-221 
may have the same regulatory role in vascular endothelial 
cells. The reasons of the positive correlation between miR-
221 and vWF in plasma levels need to be studied further.

Because the etiology of extrapulmonary ARDS is 
diverse, we just analyzed plasma MSC-VEC-miRNAs and 
vWF, VCAM-1, IL10, TNFα levels between 28 days sur-
vival and 28 days non-survival group in ARDSp patients 
in order to reduce the heterogeneity between patients. In 
ARDSp patients, plasma miR-26a and miR-27a levels in 
non-survival group exhibited significant statistical differ-
ences. Plasma levels of miR-26a and miR-27a were lower 
in non-survival group, which might be because the two 
miRNAs were protective factors of vascular endothelial 
cell. APACHE II score, SOFA score, and lactic acid value 
showed significant statistical differences between two 
groups. Receiver operating characteristic curve (ROC 
curve) showed that SOFA score, APACHE II score, lactic 
acid value, miR-26a, miR-27a roughly equally predict the 
prognosis of ARDSp patients. Survival curve intuitively 
points out that plasma miR-26a and miR-27a levels were 
associated with mortality in ARDSp patients. So, miR-26a 
and miR-27a may be potential biomarkers for predicting 
the prognosis of ARDSp patients, the molecular mecha-
nisms behind this which need to be further studied.

There are limitations in this study. Firstly, as stated 
above, our candidate miRNAs limited to the MSC-VEC-
miRNAs, which is associated with MSC, has regulatory 
effects on VEC and has previously been studied in ARDS. 
The broader miRNA spectrum needs to be involved in 
future research. Secondly, this study is a clinical observa-
tional study, but not involved the molecular mechanism 
of miRNA regulation in cell. So, we cannot determine 
where the differential expression of plasma miR-221 and 
miR-27b come from and which results the difference 
contributes to. Thirdly, the sample size is relatively small 

which may have limited the power of statistical difference 
in this study.

In conclusion, ARDSp patients have higher Murray lung 
injury score and worse oxygenation index than ARDSexp 
patients in our study. Plasma miR-221, miR-27b and vWF 
levels in ARDSexp patients exhibited significantly lower 
than that in ARDSp patients. Significant positive correla-
tion was found between miR-221 and vWF in plasma lev-
els. In addition, we found plasma miR-26a and miR-27a 
levels in non-survival group exhibited significantly lower 
than that in survival group in ARDSp patients.
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