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Abstract 

Background:  The majority of critically ill patients do not suffer from acute respiratory distress syndrome (ARDS). To 
improve the treatment of these patients, we aimed to identify potentially modifiable factors associated with outcome 
of these patients.

Methods:  The PRoVENT was an international, multicenter, prospective cohort study of consecutive patients under 
invasive mechanical ventilatory support. A predefined secondary analysis was to examine factors associated with 
mortality. The primary endpoint was all-cause in-hospital mortality.

Results:  935 Patients were included. In-hospital mortality was 21%. Compared to patients who died, patients who 
survived had a lower risk of ARDS according to the ‘Lung Injury Prediction Score’ and received lower maximum airway 
pressure (Pmax), driving pressure (ΔP), positive end-expiratory pressure, and FiO2 levels. Tidal volume size was similar 
between the groups. Higher Pmax was a potentially modifiable ventilatory variable associated with in-hospital mortal‑
ity in multivariable analyses. ΔP was not independently associated with in-hospital mortality, but reliable values for ΔP 
were available for 343 patients only. Non-modifiable factors associated with in-hospital mortality were older age, pres‑
ence of immunosuppression, higher non-pulmonary sequential organ failure assessment scores, lower pulse oximetry 
readings, higher heart rates, and functional dependence.

Conclusions:  Higher Pmax was independently associated with higher in-hospital mortality in mechanically ventilated 
critically ill patients under mechanical ventilatory support for reasons other than ARDS.
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Introduction
Mechanical ventilation is a potentially life-saving interven-
tion, though there is an increasing body of evidence for 
potential harm from this intervention in critically ill patients 
[1, 2]. Too high tidal volumes (VT) and airway pressures 
have been shown to be associated with worse outcomes in 
patients with acute respiratory distress syndrome (ARDS) [3, 
4], and there is increasing evidence for the injurious effects 
of too high VT in ventilated patients without ARDS [5, 6]. 
While inadequately too low positive end-expiratory pres-
sures (PEEP) have been demonstrated to worsen outcome of 
patients with ARDS, especially in moderate or severe cases 
[7], patients without ARDS likely do not benefit from higher 
PEEP [8]. More recently, a positive association between 
driving pressures (ΔP) and mortality was demonstrated in 
patients with ARDS [9], but it is unclear whether ΔP is asso-
ciated with a worse outcome also in patients without ARDS.

Results from the ‘Large observational study to UNder-
stand the Global impact of Severe Acute respiratory 
FailurE’ (LUNG SAFE) [10], a prospective cohort study 
undertaken in 459 intensive care units (ICUs) in 50 coun-
tries, as well as the more recent ‘PRactice of VENTila-
tion in patients without ARDS study’ (PRoVENT) [11], a 
prospective cohort study undertaken in 119 ICUs in 16 
countries, convincingly showed that the practice of inva-
sive mechanical ventilatory support in ICUs has changed 
remarkably over the recent years [10–12]. First, VT size 
decreased over time, not only in patients with ARDS [10, 
12–14], but also in patients at risk of ARDS [11]. Pres-
ently, VT above 10 to 12  ml/kg predicted body weight 
(PBW) is seldom used. The median PEEP level that is set 
has increased over time in patients without ARDS [11, 
13, 14]. In patients with ARDS, higher levels of PEEP 
usually are restricted to patients with more severe hypox-
emia [7, 10, 15]. Both investigations, though, suggested 
there is still potential for improvement in ventilatory 
management in critically ill patients [10, 11], and one 
recently published secondary analysis of LUNG SAFE 
showed that lower PEEP, higher peak inspiratory (Ppeak), 
plateau (Pplat), ΔP, and increased respiratory rate repre-
sent potentially modifiable factors contributing to worse 
outcome in patients with ARDS [16].

The aim of the present study was to identify modifi-
able respiratory variables that could potentially change 
outcome in critically ill patients under invasive mechani-
cal ventilatory support without ARDS. Specifically, we 
hypothesized that there are several modifiable respiratory 
variables associated with all-cause in-hospital mortality.

Methods
Study design
PRoVENT was an investigator-initiated international 
multicenter study; details of its methods have been 

published elsewhere [11, 17]. Details on study popula-
tion and data collection are described in the supple-
ment. PRoVENT was registered at Clinicaltrials.gov 
(NCT01868321).

Patients
Consecutive patients under invasive mechanical ventila-
tory support were eligible for participation if admitted in 
a predefined period lasting one week. Inclusion criteria 
were: (1) age ≥ 18 years and (2) under invasive mechani-
cal ventilatory support, which could have been initiated 
outside the hospital, in the emergency room, in the nor-
mal ward or in the operating room, or start of invasive 
mechanical ventilatory support in the ICU, after admis-
sion. Patients in whom mechanical ventilatory sup-
port was started before the study recruitment week of 
PRoVENT, patients receiving only noninvasive mechani-
cal ventilatory support or transferred from another hos-
pital under invasive mechanical ventilatory support 
were excluded. Although data were also collected from 
patients who fulfilled the Berlin definition for ARDS [18] 
at start of ventilation, data of those patients were not 
used in the present analysis.

Definitions and calculations
The risk of death was derived from acute physiology and 
chronic health evaluation (APACHE) II scores [19] or 
simplified acute physiology score (SAPS) III [20].

Under the assumption that the maximum airway pres-
sure (Pmax) during pressure-controlled assist modes of 
invasive mechanical ventilatory support is similar to Pplat 
during volume-controlled assist modes [21, 22], Pmax 
was defined as Pmax in pressure-controlled assist modes 
and plateau pressure in volume-controlled assist modes, 
when available. Also, ΔP was calculated by subtracting 
PEEP from Pmax during pressure-controlled and volume-
controlled ventilation, respectively. This, however, was 
only done when set and measured respiratory rates were 
equal, indicating the absence of spontaneous breathing.

VT size was expressed as a volume normalized for 
predicted body weight (ml/kg PBW). The PBW of male 
patients was calculated as equal to 50 + 0.91(centimeters 
of height—152.4); that of female patients was calculated 
as equal to 45.5 + 0.91(centimeters of height—152.4) [23]. 
Dead space fraction was calculated as (partial pressure 
of carbon dioxide in arterial blood (PaCO2)–end-tidal 
carbon dioxide (etCO2))/PaCO2, and static compliance 
of the respiratory system as VT/ΔP. ‘Non-pulmonary’ 
sequential organ failure assessment (SOFA) was cal-
culated by leaving out the pulmonary component and 
amending the denominator accordingly. The presence of 
acidosis was split into respiratory and metabolic acidosis 
to include separately in the univariate analysis, under the 
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assumption that a respiratory acidosis could be modifi-
able by adjusting respiratory minute volume as opposed 
to metabolic acidosis. Immunosuppression was defined 
as the presence of human immunodeficiency virus or 
the use of chemotherapy, systemic steroids (> 1 mg/kg of 
prednisone or equivalent), or other immunosuppressive 
agents.

Outcomes
The primary outcome was all-cause in-hospital mortality, 
defined as mortality at hospital discharge, or at 90  days 
after start of invasive mechanical ventilatory support 
while still in hospital, whichever occurred first. The sec-
ondary outcome was ICU mortality, defined as mortality 
at ICU discharge or at 90  days after start of mechani-
cal ventilatory support while still in ICU, whichever 
occurred first.

Statistical analysis
Daily-collected variables, including Pmax or Pplat, ΔP, 
PEEP, VT, oxygen fraction of inspired air (FiO2), respira-
tory rate, dead space fraction, and compliance, and blood 
gas analysis parameters such as partial pressure of oxy-
gen in arterial blood (PaO2), PaCO2, pH, and bicarbonate 
level, were presented as medians with their interquartile 
ranges. Proportions were compared using Chi-square 
or Fisher’s exact tests, and continuous variables were 
compared using the t test or Wilcoxon rank sum test, as 
appropriate. Since the amount of missing data were low, 
no assumptions were made for missing data.

In all descriptive analyses, survivors were separated 
from non-survivors according to all-cause in-hospital 
mortality. In univariate analyses assessing the impact of 
ventilatory variables on outcome, relative risk (RR) of 
in-hospital mortality was estimated for patients dividing 
the study sample according to the median of Pmax (≤ 18 
vs. > 18 cm H2O), ΔP (≤ 12 vs. > 12 cm H2O), PEEP (≤ 5 
vs. > 5  cm H2O), and VT (≤ 7.9 vs. > 7.9  ml/kg PBW), as 
measured at the first day of ventilation. For this specific 
analysis, two separate groups were included: patients not 
at risk and patients at risk of ARDS according to the Lung 
Injury Prediction Score (LIPS), where a LIPS ≥ 4 was 
considered ‘at risk of ARDS’ and a LIPS < 4 ‘not at risk of 
ARDS.’

To identify potentially modifiable and non-modifiable 
factors contributing to hospital mortality, a multivariable 
model was built using demographic factors, comorbidi-
ties, illness severities, and respiratory and laboratorial 
variables at the first day of ventilation. Since Pmax and 
ΔP have a high collinearity, we chose to include only 
Pmax in the main model. We conducted multilevel analy-
ses to adjust for clustering of the data. Therefore, a mul-
tilevel logistic regression was used to identify factors 

contributing to mortality by modeling it as the depend-
ent variable. Variables were selected when the univariate 
analysis p value was< 0.2. Then, a multilevel multivariable 
logistic model was built with centers treated as random 
effect. The cluster effects induced by the structure of the 
data were taken into account through random effects. In 
the multivariable model, statistical significance was set 
at a p < 0.05. Results are shown as odds ratios (ORs) with 
95% confidence intervals (CI).

The odds ratio for hospital mortality of Pmax was plot-
ted in curves showing the odds ratios according to 
increases of one standard deviation of the Pmax. These 
curves were divided according to the risk of ARDS and 
adjusted for the variables included the final model and 
reported in Table 3. A similar curve was made using ICU 
mortality as outcome.

We performed a secondary analysis in which we 
replaced Pmax with ΔP in the multivariate model for in-
hospital and ICU mortality. Since we lacked reliable val-
ues for ΔP for a large group of patients, this analysis had 
a much smaller sample size, increasing the risk of losing 
power to show an association between ΔP and in-hos-
pital mortality. To test this, we performed one post hoc 
analysis in which we used Pmax instead of ΔP, but only for 
patients for whom we had a reliable ΔP.

Statistical significance was considered to be at two-
sided p < 0.05. All analyses were performed with SPSS 
v.20 (IBM SPSS Statistics for Windows, Version 20·0. 
Armonk, NY: IBM Corp.), and R v.2·12·0 (http://www.r-
project.org).

Results
Participating centers and patients
One hundred and nineteen ICUs from 16 countries in 
four continents enrolled 1021 patients under invasive 
mechanical ventilatory support. Excluding 86 patients 
who were admitted to ICU with ARDS, we analyzed the 
data from a total of 935 patients (Fig.  1). All-cause in-
hospital mortality was 21% in all patients. Patients who 
survived had lower derived risk scores for mortality, were 
younger, and had lower SOFA scores; patients who died 
were more often functionally dependent and more often 
admitted for a medical condition or for emergency sur-
gery (Table 1).

Ventilation characteristics
Patients who survived had a lower Pmax or Pplat, lower ΔP, 
lower PEEP, and lower FiO2 levels than patients who died, 
but a similar VT (Table 2). PaO2/FiO2, pulse oximetry, and 
arterial pH were higher and PaCO2 levels were lower in 
patients who survived (Table 2). The unadjusted impact 
of ventilatory parameters in the overall cohort and in 
each group of risk of ARDS is shown in Fig. 2. Mortality 

http://www.r-project.org
http://www.r-project.org
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risk was similar in patients stratified according tidal vol-
ume and ΔP. In the overall cohort, patients receiving 
higher PEEP had higher risk of hospital mortality (Fig. 2). 
Patients ventilated with higher Pmax had a higher risk of 
hospital mortality in the overall cohort and in patients at 
risk of ARDS (Fig. 2).

Factors associated with in‑hospital mortality
The results of the univariable analysis of factors associ-
ated with in-hospital mortality are provided in Additional 
file  1: Table S1. In multivariable analysis, Pmax was the 
only ventilatory variable associated with higher in-hos-
pital mortality; in this analysis, the ΔP was excluded due 
to the collinearity with Pmax (Table  3). Non-modifiable 
factors associated with worse outcome were older age, 
presence of immunosuppression, higher non-pulmonary 
SOFA, lower pulse oximetry readings, higher heart rates, 
and functional dependency (Table 3).

Figure 3 shows the odds ratio for hospital mortality per 
increase in one standard deviation in Pmax for patients 
not at risk of ARDS and patients at risk of ARDS and 
adjusted for the variables indicated in Table 3.

Factors associated with ICU mortality
Results of the univariable analysis of factors associated 
with ICU mortality are provided in Additional file  1: 
Table S2. After multivariable adjustments, Pmax was the 
only ventilatory variable associated with worse outcome 
(Additional file  1: Table S2); non-modifiable factors 
associated with worse outcome were history of COPD, 

presence of immunosuppression, higher non-pulmonary 
SOFA scores, and functional dependency.

Additional file  1: Figure S1 shows the odds ratio for 
ICU mortality per increase in one standard deviation in 
Pmax for patients not at risk of ARDS and patients at risk 
of ARDS and adjusted for the variables indicated in Addi-
tional file 1: Table S2.

Driving pressure
The analysis including ΔP was only possible in 343 
patients for whom ΔP could be calculated in a reliable 
way. When considering ΔP instead of Pmax in the model, 
there was an association between ΔP and ICU (Addi-
tional file 1: Table S3), but not between ΔP and in-hos-
pital mortality (Additional file 1: Table S4). The lack of an 
association between ΔP and in-hospital mortality could 
very well have been caused by the smaller sample size, 
since the post hoc analysis in which we used Pmax in the 
model, now using the same number of patients as done 
for the analysis including ΔP, also showed no association 
between Pmax and in-hospital mortality (Additional file 1: 
Table S5), while the association between Pmax and ICU 
mortality remained present (Additional file 1: Table S6).

Discussion
In the present study, older age, presence of immunosup-
pression, a more dependent premorbid condition, and 
severity of illness markers such as the pulse oximetry, the 
non-pulmonary SOFA score, and a higher heart rate were 
all independently associated with increased in-hospital 
mortality. In the present analysis, Pmax was the single ven-
tilator factor associated with in-hospital mortality, sug-
gesting this is the only potentially modifiable factor in 
these patients. Parts of our findings are in line with prior 
studies in this field. Older age is independently associated 
with worse outcome in patients with ARDS [16, 24, 25] 
and patients without ARDS [13], and also immunosup-
pression is a risk factor for mortality in our study and in 
trials that included patients with ARDS [16, 25]. Sever-
ity of illness factors associated with outcome was a higher 
heart rate and higher non-pulmonary SOFA score, con-
sistent with previous studies in patients with [16, 25], as 
well as in patients without ARDS [13]. In addition to the 
results of the LUNG SAFE [16], we here show that, irre-
spective of the presence of ARDS, older patients, patients 
with immunosuppression, patients with high non-pulmo-
nary SOFA score, and higher heart rate are at increased 
risk of worse outcomes. Ventilatory support with a higher 
Pmax was independently associated with both increased 
hospital mortality and ICU mortality. This finding is in 
accordance with previous studies where higher Pmax was 
associated with worse outcomes, for example increased 
risk of ventilator-induced lung injury (VILI) [26, 27], and 

Fig. 1  Flowchart of inclusion
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Table 1  Demographic characteristics of  patients without  ARDS receiving mechanical ventilation, comparison of  survi-
vors and non-survivors

All (n = 935) Survivors (n = 738) Non-survivors (n = 197) p valuea

Age (years) 65.0 (52.0–75.0) 63.0 (50.0–73.0) 72.0 (60.0–79.0) < 0.001

Gender (male) 570/910 (62.6) 453/713 (36.5) 117/197 (40.6) 0.287

Ethnic 0.366

 African 11/903 (1.2) 7/708 (1.0) 4/195 (2.1)

 Afro-Caribbean 11/903 (1.2) 8/708 (1.1) 3/195 (1.5)

 Asian 57/903 (6.3) 40/708 (5.6) 17/195 (8.7)

 Caucasian 760/903 (84.2) 603/708 (85.2) 157/195 (80.5)

 Latin American 64/903 (7.1) 50/708 (7.1) 14/195 (7.2)

BMI (kg/m2) 25.5 (22.9–29.2) 25.7 (23.0–29.3) 24.7 (22.5–27.9) 0.019

PBW (kg) 64.2 (54.2–71.5) 64.6 (54.2–72.4) 64.2 (52.8–70.6) 0.143

Smoker

 Never 298/902 (33.0) 238/706 (33.7) 60/196 (30.6) 0.044

 Previous 153/902 (17.0) 122/706 (17.3) 31/196 (15.8)

 Former 31/902 (3.4) 26/706 (3.7) 5/196 (2.6)

 Current 174/902 (19.3) 144/706 (20.4) 30/196 (15.3)

 Unknown 246/902 (27.3) 176/706 (24.9) 70/196 (35.7)

Functional status

 Independent 675/900 (75.0) 569/705 (80.7) 106/195 (54.4) < 0.001

 Partially dependent 158/900 (17.6) 96/705 (13.6) 62/195 (31.8)

 Totally dependent 40/900 (4.4) 26/705 (3.7) 14/195 (7.2)

 Unknown 27/900 (3.0) 14/705 (2.0) 13/195 (6.7)

Reason for ICU admission

 Planned surgery 313/902 (34.7) 292/706 (41.4) 21/196 (10.7) < 0.001

 Emergency surgery 187/902 (20.7) 138/706 (19.5) 49/196 (25.0)

 Clinical condition 402/902 (44.6) 276/706 (39.1) 126/196 (64.3)

NIV before intubation 69/900 (7.7) 46/705 (6.5) 23/195 (11.8) 0.022

 Duration (min) 240.0 (75.0–720.0) 285.0 (74.2–626.2) 180.0 (60.0–690.0) 0.013

Risk of death* (%) 12.7 (7.0–35.1) 12.0 (4.1–30.0) 34.5 (12.9–56.8) < 0.001

LIPS 3.5 (2.0–6.0) 2.5 (1.0–5.0) 4.5 (2.5–7.0) < 0.001

Limitation of treatment 30/892 (3.4) 17/696 (2.4) 13/196 (6.6) 0.004

Unplanned admission 483/900 (53.7) 341/704 (48.4) 142/196 (72.4) < 0.001

Reason for intubation**

 Cardiac arrest 79/900 (8.8) 46/704 (6.5) 33/196 (16.8) < 0.001

 Anesthesia for surgery (planned) 467/900 (51.9) 412/703 (58.6) 55/196 (28.1) < 0.001

 Depressed level of consciousness 239/900 (26.6) 179/703 (25.5) 60/196 (30.6) 0.148

 Respiratory failure 255/900 (28.4) 159/702 (22.6) 96/196 (49.0) < 0.001

Chronic comorbidity**

 Hypertension 381/894 (42.6) 287/700 (41.0) 94/194 (48.5) 0.063

 Diabetes mellitus 166/896 (18.5) 125/702 (17.8) 41/194 (21.1) 0.290

 Heart failure 158/894 (17.7) 109/700 (15.6) 49/194 (25.3) 0.001

 Chronic kidney failure 94/897 (10.5) 60/703 (8.5) 34/194 (17.5) < 0.001

 Cirrhosis 33/896 (3.7) 22/702 (3.1) 11/194 (5.7) 0.096

 COPD 107/888 (12.0) 66/695 (9.5) 41/194 (21.2) < 0.001

  Oxygen at home 16/935 (1.7) 6/738 (0.8) 10/197 (5.1) < 0.001

 Cancer 219/896 (24.4) 170/702 (24.2) 49/194 (25.3) 0.765

  Former 65/888 (7.3) 49/695 (7.1) 16/193 (8.3) 0.835

  Current 146/888 (16.4) 114/695 (16.4) 32/193 (16.6)

 Neuromuscular disease 19/895 (2.1) 20/701 (2.8) 4/194 (2.1) 0.726
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increased mortality in patients without ARDS [13] and 
those with ARDS [16, 21, 28, 29].

ΔP was only associated with ICU mortality and not with 
in-hospital mortality. It should be recognized, though, 
that that analysis was only possible for 343 patients, and 
this smaller sample size may have reduced the power so 
that there was no association between ΔP and in-hospital 
mortality. This could also be concluded from the results 
of the post hoc analysis of Pmax, using the same smaller 
cohort of patients. Nevertheless, the finding that ΔP was 
not associated with in-hospital mortality is in line with 
a recently published investigation in a cohort of patients 
without ARDS [30]. In addition, the small range of tidal 
volumes used in this cohort also led to a small range 
of ΔP, which could blunt the effect of ΔP on mortality, 
which may be much subtler than is found in patients with 
ARDS [9]. Similar findings came from a recently pub-
lished study that failed to find an association between 
ΔP and mortality, even though their results show a trend 
for higher mortality rates with each cm H2O increase of 
ΔP [30]. Yet the influence of ΔP on outcome is consistent 
with previous reports exposing the importance of ΔP on 
development of pulmonary complications also in patients 
without ARDS undergoing general anesthesia for surgery 
[31], and on ventilator-induced diaphragmatic injury in 
critically patients receiving mechanical ventilation [32]. 
Similarly, experimental studies suggested an association 
between higher ΔP and development of VILI. In studies 
considering patients with ARDS, ΔP was the ventilation 
variable that best stratified mortality risk, even in those 
undergoing ECMO for refractory hypoxemia [9, 16, 28, 
33, 34].

While higher VT was related to worse outcomes in criti-
cally ill patients without ARDS [5, 6, 35], and with pul-
monary complications in patients undergoing general 
anesthesia for surgery [36–38], in this analysis as well as 
the earlier reported primary analysis of PRoVENT [11], 
such an association was not found. The lack of a relation-
ship between VT and outcome in the present study likely 
reflects the widespread adoption of lower VT ventilation, 
as VT in our cohort concentrated in a narrow range around 
a median of 7.9  ml/kg PBW. With less patients receiving 
ventilation with high VT, the association between VT and 
outcome was no longer present. This finding is in line with 
the abovementioned recently published investigation in a 
cohort of patients without ARDS [30]. We are awaiting the 
results from two randomized controlled trials (RCT) test-
ing different VT in patients without ARDS [39, 40].

A higher PEEP level was not associated with outcome 
in our study, and this is similar to previous findings [8, 
11, 41]. However, one small randomized controlled trial 
found that application of ‘prophylactic’ PEEP in non-
hypoxemic ICU patients not only reduced the number 
of hypoxemic episodes, but also the incidence of ventila-
tor-associated pneumonia [42]. Nevertheless, most trials 
performed so far that addressed the effects of PEEP on 
outcomes in ICU patients without ARDS were relatively 
small and mainly assessed other outcomes than mortal-
ity, for example development of pulmonary complica-
tions [8]. Well-designed RCT are needed to address the 
true impact of PEEP in ICU patients without ARDS.

We suggest that the risk of ARDS can act as an addi-
tive to ‘injurious’ ventilation, which can be explained by 
a smaller inspiratory capacity in these patients. When 

BMI body mass index, PBW predicted body weight, ICU intensive care unit, NIV noninvasive ventilation, LIPS Lung Injury Prediction Score, COPD chronic obstructive 
pulmonary disease, SOFA sequential organ failure assessment, ARDS acute respiratory distress syndrome

*Risk of death was derived from scores on APACHE II or SAPS III

**Patient can have more than one diagnosis
a  p value is related to comparison between survivors and non-survivors
b  For all SOFA scores for which data points were missing, this value was omitted and the denominator adjusted accordingly

Table 1  continued

All (n = 935) Survivors (n = 738) Non-survivors (n = 197) p valuea

 Immunosuppression 70/895 (7.8) 41/702 (5.8) 29/193 (15.0) < 0.001

 Use of NIV at home 11/892 (1.2) 7/698 (1.0) 4/194 (2.1) 0.237

Severity of illness, SOFA scoreb

Total 6.0 (4.0–9.0) 5.0 (3.0–8.0) 8.0 (6.0–11.0) < 0.001

Non-pulmonary SOFA 4.0 (2.0–7.0) 4.0 (2.0–6.0) 6.0 (4.0–9.0) < 0.001

Pulmonary 2.0 (0.0–3.0) 1.0 (0.0–3.0) 2.0 (1.0–3.0) < 0.001

Hematologic 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.032

Liver 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–1.0) 0.005

Circulation 1.0 (0.0–3.0) 1.0 (0.0–3.0) 2.0 (0.0–4.0) < 0.001

Neurology 2.0 (0.0–4.0) 2.0 (0.0–4.0) 3.0 (1.0–4.0) < 0.001

Renal 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.0 (0.0–2.0) < 0.001
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Table 2  Characteristics of critically ill patients without ARDS receiving mechanical ventilation, comparison of survivors 
and non-survivors

All (n = 935) Survivors (n = 738) Non-survivors (n = 197) p valuea

Ventilator settings

Mode of ventilation

 Volume-controlled 116/849 (13.7) 85/657 (12.9) 31/192 (16.1) 0.075

 Pressure-controlled 193/849 (22.7) 151/657 (23.0) 42/192 (21.9)

 Pressure support 80/849 (9.4) 68/657 (10.4) 12/192 (6.3)

 SIMV 223/849 (26.3) 178/657 (27.1) 45/192 (23.4)

 BiPAP/APRV 185/849 (21.8) 138/657 (21.0) 47/192 (24.5)

 ASV 17/849 (2.0) 16/657 (2.4) 1/192 (0.5)

 PAV 0/849 (0.0) 0/657 (0.0) 0/192 (0.0)

 NAVA 1/849 (0.1) 1/657 (0.2) 0/192 (0.0)

 VAPS 8/849 (0.9) 4/657 (0.6) 4/192 (2.1)

 PRVC 23/849 (2.7) 14/657 (2.1) 9/192 (4.7)

 Other 3/849 (0.4) 2/657 (0.3) 1/192 (0.5)

Ventilatory variables

 Maximum airway pressure (cm H2O) 18.0 (15.0–22.0) 18.0 (15.0–22.0) 20.0 (16.0–24.0) 0.001

 Plateau pressure (cm H2O)b 16.0 (13.0–20.0) 15.0 (12.0–19.0) 17.0 (14.0–21.0) 0.005

 No of patients 343/935 (36.7) 259/738 (35.1) 113/197 (57.4) < 0.001

 Tidal volume (ml) 500 (440–575) 500 (450–580) 500 (414–568) 0.229

 Tidal volume (ml/kg PBW) 7.9 (6.8–9.1) 7.9 (6.8–9.1) 8.1 (6.7–9.2) 0.622

  Controlled vent mode 7.7 (6.7–8.9) 7.7 (6.8–8.9) 7.8 (6.4–9.2) 0.958

  Spontaneous vent mode 8.0 (6.8–9.2) 7.9 (6.8–9.2) 8.1 (6.9–9.3) 0.616

  p value (controlled vs. spontaneous) 0.089 0.161 0.340

  ≤ 7 242/811 (29.8) 188/627 (30.0) 54/184 (29.3) 0.181

  7–8 347/811 (42.8) 271/627 (43.2) 76/184 (41.3)

  9–10 161/811 (19.9) 116/627 (18.5) 45/184 (24.5)

  > 10 61/811 (7.5) 52/627 (8.3) 9/184 (4.9)

 PEEP (cm H2O) 5.0 (5.0–8.0) 5.0 (5.0–8.0) 6.0 (5.0–8.0) 0.004

  ≤ 5 450/830 (54.2) 365/642 (56.9) 85/188 (45.2) 0.003

  6–8 253/830 (30.5) 185/642 (28.8) 68/188 (36.2)

  9–10 86/830 (10.4) 57/642 (8.9) 29/188 (15.4)

  > 10 41/830 (4.9) 35/642 (5.5) 6/188 (3.2)

 Driving pressure (cm H2O) 12.0 (9.0–15.0) 12.0 (9.0–15.0) 13.0 (10.0–16.0) 0.020

 Respiratory rate (bpm) 15.0 (12.0–18.0) 15.0 (12.0–18.0) 15.0 (12.0–18.0) 0.753

 FiO2 0.5 (0.4–0.6) 0.4 (0.4–0.5) 0.5 (0.4–0.7) < 0.001

 Static compliance (ml/cm H2O) 54.2 (36.9–77.1) 55.4 (40.0–84.0) 54.3 (32.4–76.3) 0.121

 Indexed static compliance (ml/cm H2O PBW) 0.83 (0.65–1.27) 0.85 (0.66–1.33) 0.80 (0.49–1.09) 0.069

 Minute ventilation (l/min) 7.4 (6.2–8.9) 7.5 (6.2–8.9) 7.2 (6.1–8.9) 0.409

Vital signs

SpO2 (%) 99 (97–100) 99 (98–100) 98 (95–100) < 0.001

Heart rate (bpm) 87 (75–100) 85 (73–98) 95 (80–110) < 0.001

Mean arterial pressure (mmHg) 78 (69–90) 79 (70–92) 73 (64–86) < 0.001

etCO2 (mmHg) 36 (30–42) 36 (30–41) 36 (30–45) 0.976

VD/VT
* 20.0 (10.5–28.5) 19.2 (9.3–25.9) 21.5 (12.4–33.6) 0.077

Laboratory data

PaO2/FiO2 (mmHg) 261 (165–367) 285 (187–393) 232 (139–342) < 0.001

PaCO2 (mmHg) 38.0 (34.0–45.0) 37.5 (34.0–45.0) 40.0 (35.0–52.0) 0.003

pH 7.36 (7.30–7.42) 7.37 (7.31–7.43) 7.34 (7.25–7.41) < 0.001

HCO3 (mEq/l) 22.0 (20.0–25.0) 22.0 (20.0–25.0) 22.0 (18.0–25.0) 0.090



Page 8 of 12Simonis et al. Ann. Intensive Care  (2018) 8:39 

ARDS acute respiratory distress syndrome, SIMV synchronized intermittent mandatory ventilation, BiPAP biphasic positive airway pressure, APRV airway pressure 
release ventilation, ASV adaptive support ventilation, PAV proportional assist ventilation, NAVA neurally adjusted ventilatory assist, VAPS volume-assured pressure 
support, PRVC pressure-regulated volume control, PEEP positive end-expiratory pressure, etCO2 end-tidal carbon dioxide, FiO2 inspired fraction of oxygen, PaO2 partial 
pressure of oxygen, PaCO2 partial pressure of carbon dioxide, HCO3 bicarbonate, PBW predicted body weight, BPM beats per minute, VD/VT dead space fraction, SpO2 
pulse oximetry, ICU intensive care unit

*VD/VT calculated as (PaCO2–etCO2)/PaCO2
a  p value is related to comparison between survivors and non-survivors
b  Plateau pressure values are limited to patients in whom this value was reported and in whom either an assist control mode was used or in whom a mode permitting 
spontaneous ventilation was used

Table 2  continued

All (n = 935) Survivors (n = 738) Non-survivors (n = 197) p valuea

Clinical outcome

Duration of ventilation (days) 2 (1–4) 2 (1–4) 2 (1–4) 0.974

ICU length of stay (days) 4 (2–10) 3 (2–8) 8 (3–16) < 0.001

Hospital length of stay (days) 16 (9–35) 16 (9–34) 17 (7–37) 0.583

Fig. 2  Unadjusted relative risks of hospital mortality in the overall cohort and in patients at risk and not at risk of ARDS and according to the 
median of the: a Pmax; b PEEP; c ∆P; and d tidal volume. Abbreviations: Pmax: maximum airway pressure; PEEP: positive end-expiratory pressure; VT: 
tidal volume; ∆P: driving pressure; RR: relative risk; CI: confidence interval
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the inspiratory capacity is exceeded, stress failure occurs 
[43, 44]; thus, the level of a certain ventilation parameter 
could be well within the inspiratory capacity of a patient 
not at risk, while exceeding the smaller capacity of a 

patient at risk. These findings are particularly important 
since PRoVENT found differences between the venti-
latory management of patients at risk and not at risk of 
ARDS [11]. While within the inspiratory capacity, the 
only independent variable for VILI is dynamic strain, i.e., 
VT, above the inspiratory capacity, the combination of all 
ventilation parameters can lead to VILI and worse out-
come [43, 44].

The present analysis has several limitations. It is 
important to note that we classified pulse oximetry as 
non-modifiable; however, one could argue that this is 
modifiable through adjustment of FiO2. Also, although 
respiratory variables are potentially modifiable, adjust-
ment of the ventilator can be influenced by certain 
non-modifiable factors that are present at the time of 
adjustment. For example, PEEP is affected by hypox-
emia; some protocols allow higher plateau pressures 
in the presence of severe acidemia, and ΔP is directly 
influenced by changes in the respiratory system com-
pliance. These interactions are complex, and ventila-
tor settings may not always turn out to be modifiable 
when treating a patient. Another limitation is the use 
of maximal airway pressure in pressure-controlled 
mode as a surrogate for the plateau pressure to calcu-
late ΔP, although this was only done when there was 
no proof of spontaneous breathing efforts to minimize 
erroneous measurements. Prospective trials are needed 
investigating specifically the directly measured pres-
sures in the lung, including the transpulmonary driving 

Table 3  Factors associated with  in-hospital mortality 
in patients without ARDS receiving mechanical ventilation

Mortality is defined as mortality at hospital discharge or at 90 days after start 
of invasive mechanical ventilatory support while still in hospital, whichever 
occurred first

All parameters were measured in the first day of ventilation

VD/VT was not included in the multivariable model because there were many 
missing values (68.8%)

Static compliance corrected by the PBW was not included in the model due 
to many missing values (64.8%) and to multicollinearity with Pmax (r = − 0.351; 
p < 0.001)

Driving pressure was excluded due to the multicollinearity with Pmax

CI confidence interval, NIV noninvasive ventilation, COPD chronic obstructive 
pulmonary disease, SOFA sequential organ failure assessment, PEEP positive 
end-expiratory pressure, FiO2 inspired fraction of oxygen, SpO2 oxygen 
saturation, BPM beats per minute, PaO2 partial pressure of oxygen, PaCO2 partial 
pressure of carbon dioxide, LIPS Lung Injury Prediction Score

Odds ratio (95% 
CI)

p value

Clinical characteristics and comorbidities

Age 1.03 (1.01–1.04) 0.001

Functional status

 Independent 1 (Reference)

 Partially dependent 2.18 (1.31–3.63) 0.003

 Totally dependent 2.04 (0.83–5.03) 0.120

Hypertension 1.00 (0.63–1.59) 0.984

Heart failure 0.96 (0.57–1.63) 0.888

Chronic kidney disease 1.04 (0.56–1.91) 0.904

COPD 1.67 (0.93–3.00) 0.086

Immunosuppression 4.21 (2.12–8.36) < 0.001

Severity of illness

Non-pulmonary SOFA 1.14 (1.07–1.22) < 0.001

LIPS 1.10 (1.02–1.20) 0.019

Management

Use of NIV before intubation 1.09 (0.52–2.29) 0.824

Maximum airway pressure (cm H2O) 1.05 (1.01–1.10) 0.020

PEEP (cm H2O) 0.93 (0.83–1.04) 0.200

FiO2 1.00 (0.99–1.01) 0.817

Laboratory parameters

PaO2/FiO2 (mmHg) 1.00 (0.99–1.01) 0.247

PaCO2 (mmHg) 0.99 (0.98–1.01) 0.886

Acidosis

 No 1 (Reference)

 Respiratory 1.35 (0.66–2.79) 0.412

 Metabolic/Mixed 1.26 (0.76–2.10) 0.369

Vital signs

SpO2 (%) 0.95 (0.91–0.99) 0.027

Heart rate (bpm) 1.01 (1.00–1.02) 0.020

Mean arterial pressure (mmHg) 0.99 (0.98–1.00) 0.153

Fig. 3  Odds ratio of hospital mortality according to increases in one 
standard deviation of Pmax and in the patients at risk and not at risk of 
ARDS. All curves are adjusted by the same set of variables described 
in Table 3
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pressure, to explore their effect on outcome in patients 
without ARDS.

By identifying potentially modifiable factors in care of 
ICU patients, we indicate what future implementation 
studies should focus on to actually prove benefit of the 
suggested strategies on outcome. The identification of 
non- or less-modifiable factors points out which patients 
are more vulnerable and potentially may benefit most 
from an early start of protective treatment strategies.

Conclusion
The present analysis of a large prospective observational 
study suggests that higher Pmax was a potentially modi-
fiable factor associated with increased in-hospital mor-
tality in critically ill patients without ARDS. Whether 
ΔP is also a potentially modifiable factor associated with 
increased in-hospital mortality needs further testing in 
larger patient cohorts.
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