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Abstract 

Animal experiments are widely used in preclinical medical research with the goal of disease modeling and exploration 
of novel therapeutic approaches. In the context of sepsis and septic shock, the translation into clinical practice has 
been disappointing. Classical animal models of septic shock usually involve one-sex-one-age animal models, mostly 
in mice or rats, contrasting with the heterogeneous population of septic shock patients. Many other factors limit the 
reliability of preclinical models and may contribute to preclinical research failure in critical care, including the host 
specificity of several pathogens, the fact that laboratory animals are raised in pathogen-free facilities and that organ 
support techniques are either absent or minimal. Advanced animal models have been developed with the aim of 
improving the clinical translatability of experimental findings. So-called animal ICUs refer to the preclinical investiga-
tion of adult or even aged animals of either sex, using—in case of rats and mice—miniaturized equipment allowing 
for reproducing an ICU environment at a small animal scale and integrating chronic comorbidities to more closely 
reflect the clinical conditions studied. Strength and limitations of preclinical animal models designed to decipher the 
mechanisms involved in septic cardiomyopathy are discussed. This article reviews the current status and the chal-
lenges of setting up an animal ICU.
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Introduction
Animal experiments are widely used in preclinical medi-
cal research for modeling disease and for exploring novel 
therapeutic approaches. In the context of sepsis and sep-
tic shock, the translation into clinical practice has been 
fairly disappointing [1]. Clearly, models are to mirror 
key features of the condition to be studied, but, never-
theless, they are not capable of completely replicating 
all aspects due to inherent simplification. This issue was 
elegantly summarized by the British statistician George 
Box: “Essentially, all models are wrong, but some are 
useful” [2]. Certainly, in the context of sepsis and septic 

shock, the lacking translation of animal experiments to 
clinical practice is at least in part due to the complex-
ity of the disease state per se. Moreover, the discrepancy 
between promising experimental findings and disap-
pointing translation into the clinical setting has also been 
referred to the inappropriateness of the models used, 
which ultimately often results in “experimentally induced 
disturbances that usually diverge from naturally occur-
ring human illness, precluding the replication of disease 
dynamics and time course” [3]. Moreover, the authors 
of the latter review stated that “experiments with more 
advanced supportive care[…], permitting the testing of 
drugs in a more realistic setting “ should be applied [1]. 
It is self-evident that this raises the question whether 
an “animal ICU” is necessary. An “animal ICU” refers to 
investigation of adult or even aged animals of either sex, 
eventually with underlying chronic comorbidities and 
with—in the case of rodents—miniaturized equipment 
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allowing for reproducing an ICU environment, which 
would ideally integrate standard interventions (includ-
ing antibiotics, fluids, monitoring) used in the clinical 
setting of sepsis (see below for details). This discussion 
is by no means new: Two decades ago, Daniel Traber 
already highlighted this problem: “Would you as a criti-
cal care physician accept data on a septic patient who 
was not resuscitated? Would you accept data from a drug 
study on an intensive care patient who was not only not 
resuscitated with fluid but who did not even have blood 
pressures and heart rates monitored? If the animals are 
resuscitated, is the resuscitation to a specific physiologic 
variable? The pathophysiology and outcome of an unre-
suscitated, unmonitored, septic patient is certainly dif-
ferent” [4]. The objectives of the present article are (1) 
to discuss the strengths and limitations of the currently 
used animal models of sepsis/septic shock, (2) to review 
the current status and the challenges of setting up an 
animal ICU and (3) to highlight the relevance of an ICU 
animal model in the specific example of the septic cardio-
myopathy. In this context, this article is complementary 

to the most recent publications on the “Minimum quality 
threshold in pre-clinical sepsis studies (MQTIPSS)” initia-
tive of the Wiggers Bernard Conference in Vienna, May 
2017 [5–8].

Classical animal models of sepsis/septic shock: 
strengths and limitations
Do not abandon yet the mouse research ship
Animal models allow for testing hypotheses generated 
in patients using intact living systems, so that currently 
there is no better way to bridge between patients and 
the laboratory bench. When setting up an animal model, 
the question that immediately arises is: “Which species 
should be studied?” Clearly, the most frequently used 
species is the mouse because of the availability/price of 
the animals, the accessibility of specific reagents and the 
development of genetically modified mice. The “pros” 
and “cons” of the most frequently used mammal spe-
cies are summarized in Fig. 1. Basic laboratory observa-
tions, mechanistic studies or pre-treatment assessment 
can be performed either by blocking or stimulating key 
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pathways with specific effectors and/or by genetic manip-
ulation, ultimately allowing sophisticated analysis. Gene 
editing permitted by the CRISPR-Cas9 system now gives 
the ability to change an organism’s DNA and has recently 
generated a lot of excitement in the scientific commu-
nity [9]. There are obvious anatomical and physiological 
limitations while extrapolating results from a 20–30  g 
rodent to a 70–80 kg human adult. However, one has to 
remember that one of the most ground-breaking immu-
nological discoveries was obtained in flies (Drosophila 
melanogaster): Toll pathway cascade and the subsequent 
characterization of toll-like receptors have reshaped our 
understanding of the immune system [10]. Indeed, it is 
important to keep in mind that even the most simplistic 
models, in particular mouse models, are potent experi-
mental models for biological questions and/or proof-of-
concept studies. A vast amount of researches over the 
last decades has resulted in the development of numer-
ous examples of valid mouse-to-human translation [11]. 
These models are the key resource for many biological 
explorations. The problem of experimental variability 
can be easily overcome while studying small animals by 
increasing the sample size, whereas it can hardly be in 
larger species due to technical and financial concerns. A 
number of excellent reviews have highlighted interspe-
cies anatomical and physiological differences to help in 
the selection of appropriate animal models and ensure 
successful transposition in the clinics [12–16]. Indeed, a 
major strength of mouse models is to be able to promptly 
test scientific hypothesis in proof-of-concept studies, 
whereas the investments in personnel, equipment and 
consumables to develop advanced animal models can be 
prohibitive in early stage projects. Indeed, both models 
(“regular” mice models and advanced animal models) 
have their own advantages and limitations, but their aims 
are different and both are needed.

Why mouse models may poorly mimic human responses
Anatomical and physiological differences are prob-
ably the visible tip of the iceberg in terms of barriers to 
extrapolation from experimental models. Some other 
gaps are less obvious. First, age- and sex-matched animal 
models are carefully designed to standardize the con-
founding factors and to minimize heterogeneity of the 
results. Indeed, conclusions of experimental research are 
generally drawn from one-sex-one-age animal models 
(generally of young age to reduce the cost). In contrast, 
sepsis affects individuals of all ages, size/weights and sex. 
This “one size fits all” strategy is understandable in order 
to reduce animal consumption as recommended by the 
“3R” principles (“all efforts to replace, reduce, and refine 
experiments must be undertaken” [17]), but transpos-
ing the conclusions to a highly heterogeneous human 

population is questionable. Similarly, preclinical models 
cannot reproduce the full complexity of the clinically pre-
existing health conditions.

Second, regarding sepsis and host–pathogens interac-
tion, a major problem is the host specificity of most path-
ogens [18–20]. As an example, mice are not susceptible to 
infection by human influenza A virus strains. Some of the 
virus strains must be adapted to be virulent in mice by 
serial passaging [21]. Similarly, our current understand-
ing of immunology is largely defined in laboratory mice. 
However, there is growing concern that laboratory mice 
do not reflect relevant aspects of the human immune 
system, as laboratory mice have a less complex immune 
system and live in abnormally hygienic specific pathogen-
free barrier facilities [22, 23]. Humans are infected with 
a variety of acute and chronic pathogens over the course 
of their lives, and pathogen-driven selection has shaped 
the immune system of humans. The same is likely true for 
mice. However, laboratory mice we use for most biomed-
ical studies are bred in ultra-hygienic environments and 
are kept free of specific pathogens [24]. The immune sys-
tem of a human adult is probably more closely replicated 
by mice caught in the wild or purchased in pet stores 
[22]. Indeed, mice with diverse environmental exposures 
have more mature immune responses, similar to human 
adults, whereas laboratory mice have immature or neo-
nate-like immune systems. Moreover, in mouse mod-
els the genomic response to endotoxemia, trauma and 
burns was reported to only poorly mimic that of healthy 
volunteers and/or patients [25]. It is noteworthy in this 
context, however, that using the same database other 
authors came to exactly the opposite conclusion, i.e., that 
“mouse models greatly mimic human inflammatory dis-
eases” [26]. Third, an animal with a severe infection has 
two options: rapidly succumb to sepsis or spontaneously 
recover. A human being with a severe infection has an 
“intermediate” possibility: surviving (i.e., prolonged criti-
cal illness permitted by health care). Severely ill patients 
are placed in an unphysiological status due to organ sup-
port techniques, specific drugs or, in more general terms, 
all treatments provided in the ICU. There is not a single 
mechanism at play, in contrast to the initially responsi-
ble disease, but a high variety of interplaying mecha-
nisms including effects of all the therapeutic strategies 
involved. The spectrum of causes or effects is finally dif-
ficult to decipher. Because of the level of complexity, ani-
mal models incompletely replicate ICU patients. Septic 
ICU patients are compared with animals infected with 
lethal dose of microbial agents and killed at a time point 
defined by the expected survival curve (Fig.  2). Neither 
the long time course of the human disease nor the com-
plex ICU environment/treatments could be accurately 
put into the equation.
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Advanced animal models comprising full‑scale ICU 
treatment
Do we need the development of miniaturized 
and sophisticated equipment to study resuscitated rodent 
models?
As mentioned above, Angus and van der Poll [1] sug-
gested that experiments with more advanced sup-
portive care would permit the testing of drugs in a 
more realistic setting. For models of sepsis and septic 
shock, this would ideally require providing appropri-
ate antimicrobial treatment, hemodynamic monitor-
ing together with adequate fluid resuscitation as well 
as—if necessary—vasopressor/inotropic support, and 
eventually (“lung-protective”) mechanical ventilation. 

Such a strategy of using resuscitated animals indeed 
increases the chance of successful translation of ani-
mal experiments to clinical practice: In fact, already 
in 2001, Hollenberg et  al. demonstrated the impact of 
standard ICU treatment on mortality of polymicro-
bial septic shock. Combining fluid resuscitation with 
antibiotics allowed achieving a 46% survival at 48 h in 
a murine model of cecal ligation and puncture [27]. 
In other words, investigating resuscitated animals 
allowed for approximating mortality rates comparable 
to the clinical reality rather than studying an otherwise 
100% lethal model. This approach also allowed to char-
acterize the role of the inducible isoform of the nitric 
oxide synthase (iNOS). While 48-h survival did not 
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Fig. 2  Limits of classical animal models regarding sepsis/septic shock. a Infected animals are powerful models for basic laboratory observations 
and/or mechanistic studies of host/pathogen interactions. b Animals with a severe infection have two options, curing or dying, while human has 
an “intermediate” possibility, surviving. ICU patients represent an abnormal situation to an evolutionary view that is difficult to replicate. Infected 
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significantly differ between wild type and iNOS knock-
out (iNOS−/−) in animals without ICU treatment (0 
vs. 13%), iNOS−/− mice showed a markedly improved 
outcome, as compared with wild-type animals, after 
administration of antibiotics plus fluid resuscitation 
(55 vs. 24%) [28]. Moreover, development and minia-
turization of sophisticated equipment has allowed for 
overcoming many technical problems that hindered or 
even prevented the establishment of ICU procedures 
in murine experiments (Fig. 3). This is particularly true 
for mechanical ventilation, which was originally harm-
ful per se due to the lacking availability of appropriate 
small animal ventilators and/or the use of injurious 
ventilator settings, in particular as a result of high tidal 
volumes and/or inadequate positive end-expiratory 
pressure (PEEP) levels. In contrast, the recently devel-
oped small animal mechanical ventilators specifically 
designed for mice and/or rats allow for implementing 

“lung-protective” mechanical ventilation with the use 
of low tidal volumes (6–8 μL/g BW [29], adjustment of 
PEEP and maximum airway pressures according to gas 
exchange measurements, thereby following the guide-
lines of the ARDS Network and/or using the lower and 
upper inflection points obtained from the determina-
tion of pressure–volume curves [30], and inflation hold 
maneuvers to recruit atelectatic lung regions [31].

Do we need to study animal models in larger species?
Despite the above-mentioned technical advances, mice 
as experimental animals present with a major pitfall for 
translational research, namely due to their fundamentally 
different metabolic response to stress states resulting 
from their ability to rapidly reducing “non-shivering ther-
mogenesis” and thereby core temperature [32]. Hence, 
hypothermia (if not corrected by external means) is a 
characteristic feature of the murine adaptive response 

a

b

Fig. 3  ICU environment in murine experiments. a Schematic representation of the monitored parameters; b representative illustration of 
miniaturization of sophisticated equipment used to reproduce the ICU environment in murine experiments; A. carotis, artery carotis; A. mes. sup., 
artery mesenteric superior; v. portae, vein portae; A. femoralis, artery femoralis
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to stress, whereas in larger species as well as in humans 
it is a mirror of whole body energetic failure (unless 
therapeutically induced). This problem can be overcome 
by replacing mice with rats, which, given the size of the 
individual animals, obviously also alleviates numerous 
technical and instrumentation problems. Indeed, dur-
ing sepsis and septic shock, rats were demonstrated to 
much more closely resemble human beings than mice, in 
particular with respect to their long-term metabolic and 
cardiovascular profile [33]. Nevertheless, a word of cau-
tion should be left on the translational value of rat experi-
ments, in particular in the context of circulatory shock: 
Nitric oxide (NO) is referred to as the “final mediator” 
of vasodilation and impaired vasoconstrictor response 
in septic shock, and the activity of the inducible isoform 
of the NO synthase (iNOS) is particularly pronounced in 
rats, which results in five- to tenfold higher nitrite and/
or nitrate blood levels in septic and/or endotoxemic rats 
when compared to larger species (e.g., swine or sheep) 
and human beings [34–36]. Moreover, rats show pro-
nounced antioxidant enzyme activity, which, together 
with the high NO release, makes them particularly resist-
ant against ischemia/reperfusion (I/R) injury [37, 38].

Larger species, in particular when human-sized indi-
vidual animals are studied, allow for utilizing clinically 
available material, which obviously facilitates anesthesia 
and surgical instrumentation, monitoring and the choice 
of interventional targets. Moreover, the large blood vol-
ume permits repetitive blood sampling and titration of 
readouts according to routinely available biomarkers as 
well as to physiological target endpoints, as in human. 
Sheep and swine are the most commonly used larger 
species, and various physiological parameters are even 
numerically comparable to the values found in age- and/
or sex-matched patients. The “pros” and “cons” of this 
species are summarized in Fig.  1. As humans, they are 
monitored and/or vaccinated for specific pathogens 
and are exposed to an environment rich of microbial 
exposure. Nevertheless, despite the well-spread and the 
apparently close similarity of physiological and biologi-
cal readouts, there are important species-specific differ-
ences to keep in mind. For example, sheep are ruminant 
animals and their gastrointestinal anatomy and physi-
ology markedly differs from the omnivorous species 
swine, which translates into different kinetics of glu-
cose metabolism. Swine rapidly develop profound acute 
pulmonary hypertension [39, 40] and are susceptible to 
impairment of lung mechanics and gas exchange [41, 42]. 
While in sheep, similar to human beings, measuring the 
creatinine clearance is an adequate marker of glomerular 
filtration rate (GFR) [43], this can result in overestima-
tion of GFR in swine due to tubular creatinine secretion 
[44]. Currently, the mean duration of the ICU stays of 

patients for septic shock is one to several weeks. In con-
trast, the maximum duration of stay in an animal ICU is 
much shorter. Clearly, logistical constraints, in particular 
due to the required staff, assume major importance, but 
again, the choice of the species studied plays a major role, 
in particular with respect to the duration of mechanical 
ventilation (even without any additional challenge, e.g., 
circulatory shock and/or hyper-inflammatory condi-
tions). The smaller the animal, the shorter the maximal 
duration of mechanical ventilation, even with the use of 
standard clinical ventilator settings to avoid injurious 
ventilation and, hence, to prevent or at least limit any 
ventilator-induced lung injury: Whereas the maximal 
duration of mechanical ventilation in mice and rats is 
10–16 [45, 46] and 18–24 h [47, 48], respectively, larger 
species have been studied during much longer periods of 
mechanical ventilation, for even up to 48–96 h in sheep 
[49–52], 54 h in nonhuman primates [53] and 72–104 h 
in swine [54, 55]. Noteworthily, the limitation concerning 
one-sex-one-age in mice models (in contrast to the heter-
ogeneous population of septic shock patients) still exists 
while using larger species.

Do we need to study animals with various age, sex 
and underlying comorbidities?
It is well established that age, sex and, in particular, 
chronic comorbidities markedly influence the outcome 
after sepsis and/or circulatory shock. This notion is 
also true for preclinical animal experiments, for which 
the importance of age, sex [56, 57] and/or underlying 
chronic diseases, including chronic obstructive pulmo-
nary disease (COPD) [30, 58, 59] or cystic fibrosis [60], 
atherosclerosis [61], cancer [62], diabetes [63, 64] or 
even “psychological stress” [65], has been demonstrated. 
Indeed, preexisting coronary artery disease even com-
pletely abolished [66, 67] the otherwise promising results 
obtained in comparable experimental settings in young 
and healthy animals [68, 69]. Nevertheless, so far, the vast 
majority of experiments using an animal ICU, in particu-
lar when rodents are studied, investigate(d) young and 
healthy individuals. Clearly, it must be emphasized that 
since any added comorbidity will aggravate the burden to 
the animal, integrating comorbidity into the experimen-
tal design will necessarily create an ethical dilemma: Is it 
better to avoid comorbidities to reduce this burden but 
likely generate less relevant data, or include them expect-
ing that a given comorbid setting might produce novel 
and translatable findings? [5, 62]. This dilemma obviously 
is also true for the use of mechanical ventilation, which 
per se may induce hemodynamic compromise and/or 
additional lung injury, but most likely will also allow for 
deeper anesthesia and sedation and thereby alleviate res-
piratory distress.
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Contribution of animal experiments in our current 
understanding of sepsis: the example of septic 
cardiomyopathy
Although a precise definition of septic cardiomyopathy 
is still a matter of debate, cardiac dysfunction occurs in 
40–60% of septic shock patients. It is entirely revers-
ible in survivors within 10  days [70], but the presence 
of sepsis-related cardiac dysfunction is associated with 
increased short-term mortality [71–74]. Apart from 
causal treatments (antibiotics, surgical source control) 
and initial fluid resuscitation, no available treatment has 
been shown to improve the course of septic cardiomyo-
pathy in humans [75]. As myocardial tissue is not easy to 
obtain from critically ill patients, only a few studies dis-
played data on the cellular mechanisms of human septic 
cardiomyopathy from the left ventricle of patients who 
died from sepsis [76–79]. To guide the understanding of 
the main causal mechanisms of human septic cardiomyo-
pathy, most animal studies have used either endotoxin or 
fecal peritonitis models, with no or only limited resusci-
tation. Cecal ligation and puncture (CLP) models mimic 
the chronology of morphological features observed 
in human septic cardiomyopathy. Early in this model, 
prior to fluid resuscitation, animals show decreased car-
diac output [80] with normal cardiac contractile perfor-
mances of isolated perfused hearts [81]. At this stage, 
fluid resuscitation normalizes cardiac output, leading to 
the so-called hyperdynamic phase of sepsis [82]. Later 
on, animals that are more likely to die display decreased 
cardiac output [80] due to cardiac contractile dysfunction 
(i.e., the “hypodynamic phase of sepsis”) [81]. Conversely 
to the CLP model, endotoxin models (e.g., using bacterial 
lipopolysaccharide (LPS)) show very early cardiac con-
tractile dysfunction, skipping the phase of hemodynamic 
disturbances with maintained cardiac performances [83, 
84]. Surviving animals experience total recovery of their 
cardiac performances within 10  days [85–87]. Unlike 
endotoxin models, infected animals that mimic the dif-
ferent phases of human septic cardiomyopathy were very 
useful to analyze the early pathophysiological mecha-
nisms of this syndrome. For example, CLP animals dis-
play an early increase in the adrenergic response of the 
cardiomyocytes, altering calcium sensitivity of cardiac 
myofibrillar proteins [81, 88–90]. This early mechanism 
is at least in part responsible for the later attenuation 
of adrenergic response and septic cardiomyopathy [81, 
88–90]. Thus, these CLP-specific data helped researchers 
to hypothesize that preventing adrenergic stimulation in 
the early phase of sepsis might prevent cardiomyopathy 
to occur. Although CLP models are usually fluid-resus-
citated, only a minority of the studies used antibiotic 

regimens [80, 82], and none of them performed com-
plete causal treatments (i.e., both antibiotics administra-
tion and surgical source control). Therefore, one might 
hypothesize that like CLP models with only partial basic 
resuscitation, CLP models with full causal treatment 
could bring new significant insights on the pathophysi-
ological mechanisms of septic cardiomyopathy (i.e., still 
“wrong” but maybe more “useful” models [2]).

Finally, preclinical trials on septic cardiomyopathy 
yielded conflicting results with poor extrapolation to crit-
ically ill patients. Several factors might explain the failure 
to detect new efficient drugs in this context. First, numer-
ous preclinical experiments were performed on endo-
toxin models, known to poorly mimic human features of 
the septic cardiomyopathy [91–100]. Second, like mecha-
nistic studies, although preclinical trials using fecal peri-
tonitis models were usually fluid-resuscitated, none of 
them combined a causal treatments to the tested drugs 
[91, 101–108]. Third, only a few studies administered 
vasoconstrictors to maintain an appropriate systemic 
blood pressure when testing heart medications with 
vasodilator properties [107, 108]. Fourth, tested drugs 
were sometimes administered very early (< H4) [105, 106] 
after the induction of fecal peritonitis, or even before the 
insult [91, 92, 109]. All these factors might have favored 
the beneficial effects of the tested drugs and led to false 
positive results. Therefore, although sophisticated treat-
ments (e.g., mechanical ventilation) may improve the 
quality of animal studies in the context of septic cardio-
myopathy [110], implementation of the most basic causal 
treatments should be a prerequisite for future preclinical 
studies in this field.

Conclusion
Preclinical models have been widely used with the ulti-
mate goals of improving the underlying mechanisms of 
the disease and exploring new therapeutic approaches. 
Simplistic models, in particular mouse models, are potent 
experimental models for biological questions and/or 
proof-of-concept studies but failed to bridge the transla-
tional gap to the clinic in the setting of septic shock. Using 
advanced animal models, namely integrating the investi-
gation of adult (and/or aged) animals of either sex in the 
presence/absence of underlying chronic comorbidities 
under standardized animal ICU environments, i.e., by 
integrating as much as possible the standard interventions 
(including antibiotics, fluids, monitoring) used in the clin-
ical setting of sepsis, will help to overcome the classical 
limitations of previous experimental studies performed 
on septic shock and enhance their translational value.
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