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Abstract 

Background:  The average length of stay (LOS) in the intensive care unit (ICU_ALOS) is a helpful parameter summa-
rizing critical bed occupancy. During the outbreak of a novel virus, estimating early a reliable ICU_ALOS estimate of 
infected patients is critical to accurately parameterize models examining mitigation and preparedness scenarios.

Methods:  Two estimation methods of ICU_ALOS were compared: the average LOS of already discharged patients at 
the date of estimation (DPE), and a standard parametric method used for analyzing time-to-event data which fits a 
given distribution to observed data and includes the censored stays of patients still treated in the ICU at the date of 
estimation (CPE). Methods were compared on a series of all COVID-19 consecutive cases (n = 59) admitted in an ICU 
devoted to such patients. At the last follow-up date, 99 days after the first admission, all patients but one had been 
discharged. A simulation study investigated the generalizability of the methods’ patterns. CPE and DPE estimates were 
also compared to COVID-19 estimates reported to date.

Results:  LOS ≥ 30 days concerned 14 out of the 59 patients (24%), including 8 of the 21 deaths observed. Two 
months after the first admission, 38 (64%) patients had been discharged, with corresponding DPE and CPE estimates 
of ICU_ALOS (95% CI) at 13.0 days (10.4–15.6) and 23.1 days (18.1–29.7), respectively. Series’ true ICU_ALOS was greater 
than 21 days, well above reported estimates to date.

Conclusions:  Discharges of short stays are more likely observed earlier during the course of an outbreak. Cautious 
unbiased ICU_ALOS estimates suggest parameterizing a higher burden of ICU bed occupancy than that adopted to 
date in COVID-19 forecasting models.
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Introduction
The spread of a novel coronavirus (SARS-CoV-2) has 
brought about a pandemic referred to as the COVID-19 

pandemic [1]. This pandemic has resulted in a world-
wide crisis with unprecedented decisions of restric-
tive non-pharmacological mitigation interventions 
taken at local, regional, or national levels. A major aim 
of these measures is lessening as much as possible the 
daily number of new individuals requiring an admis-
sion in intensive care units (ICU) in order to be able to 
appropriately manage them in the healthcare system 
and sustain an appropriate management for the rest of 
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the population [2]. A fast inflow of new admissions in 
the ICU has critical consequences within a short time. 
For example, between March 19 and April 2 2020 in 
France, the number of ICU beds occupied by COVID-
19 infected persons dramatically increased from 1002 
to 6305 [3], corresponding to an average daily increase 
of 14% additional beds. Such a situation requires a mas-
sive and rapid increase of ICU facilities and the French 
Minister of Health announced on March 28 that the 
nationwide capacity had been increased from 5000 to 
10,000 critical beds [4]. The underlying mathematics 
are simple: an average unbalanced increase of 15% dur-
ing 14  days implies that at day 14, the resulting occu-
pancy would be that of day 0 multiplied by a factor 7.08 
since 1.15(14 days) = 7.08. The system is highly sensitive to 
a sustained unbalance: even an average increase as low 
as 2% during 2 weeks, a likely situation after outbreak 
peak, would nevertheless require increasing occupancy 
at day 14 by 32%.

The average length of stay (ALOS) in ICU is an 
important estimate relating to the stability of the 
healthcare system in terms of ICU bed occupancy. 
For instance, hypothesizing an ICU ALOS of 10  days 
in patients infected with a new emerging agent, 
the daily probability of a bed discharge would be 1/
ALOS = 1/10 = 0.10. This implies that whenever the 
rate of required admissions would exceed the 10% 
ALOS-dependent threshold, the global number of 
beds occupied or required would increase and possibly 
overwhelm capacity.

This example demonstrates that estimating the ICU 
ALOS of a population infected by an emergent virus 
constitutes a very critical information to modelers and 
decision-makers for guiding adaptations of the local 
capacities in the context of the outbreak. Such an esti-
mate is expected to be provided as soon as possible. 
However, when examining the situation within a short 
delay after the beginning of the outbreak, only few 
cases are likely to be already discharged from the ICU. 
The patients still in ICU referred to as censored cases 
must be considered in any unbiased estimation relat-
ing to the length of stay (LOS). In this study, we pre-
sent a detailed examination of the timeline of the whole 
cohort of consecutive COVID-19 patients admitted 
to a devoted ICU of the Zhongnan hospital of Wuhan 
University (ZHWU) in which we investigated the evo-
lution of the ALOS estimation according to the accu-
mulation of the cases, using two methods of estimation. 
Our results indicate that even considering a last follow-
up date corresponding to the date when two-thirds of 
the admitted patients would have been discharged, the 
ICU ALOS estimated with the biased method would be 
nearly half of that issued from the unbiased method. 

In the light of these investigations, the estimates relat-
ing to ICU LOS of COVID-19 cases that have been 
reported to date [5–8], likely underestimate the real 
values. Such estimates being also used in forecasting 
models [9–13], the present study has practical implica-
tions for improving prediction scenarios to guide pub-
lic decision.

Methods
Ethics
This study was approved by the Medical Ethics Com-
mittee, ZHWU (Clinical Ethical Approval No. 2020005). 
The informed consent was waived by the Medical Ethics 
Committee for emerging infectious disease.

Setting
As in many locations, the organization of the ZHWU 
(Hubei province, People’s Republic of China) for manag-
ing COVID-19 patients was subjected to several changes 
during the course of the COVID-19 outbreak. First, on 
December 30 2019, at a time when the outbreak emerged 
frankly, two initial ICU, one depending on emergency 
and the other from surgery, were reorganized for consti-
tuting a single entity of 31 beds devoted to the manage-
ment of patients with COVID-19 requiring critical care. 
Second, on March 12 2020, at a time when the outbreak 
had declined, all COVID-19 ICU patients were trans-
ferred to another ICU in Leishenshan hospital,  the larg-
est newly built facility for COVID-19 patients with 1600 
beds, while ICU admissions were reorganized for other 
pathologies than COVID-19 at ZHWU. Third, on April 
15, Leishenshan hospital was definitively closed and 
patients initially admitted at ZHWU were retransferred 
to this hospital.

Patients
All consecutive patients with a confirmed diagnosis of 
COVID-19 by PCR and initially admitted to the above-
mentioned ICU of 31 beds at ZHWU from December 
30 2019 to March 12 2020 (n = 57) were included in the 
study. Patients admitted to this ICU during this period 
also included 10 consecutive patients for which there 
was a radiological evidence of viral pneumonia [14] while 
RT-PCR test of throat swabs had remained negative for 
several times, and these patients were also considered as 
eligible for the study. Last follow-up of patients was made 
on April 8 2020, 91 and 34 days after the first and the last 
admission, respectively. The file of each patient along his/
her hospital course was cautiously reviewed, including 
whenever the patient was transferred to another hospital. 
The following data were collected for each patient: age, 
sex, date of admission and discharge in the hospital as 
well as the vital status at discharge (dead or alive), date 
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of admission and discharge in the ICU as well as the vital 
status at discharge (dead or alive), beginning and end 
dates of mechanical invasive or noninvasive ventilation 
procedures. Whenever a patient was transferred from the 
ICU in a given hospital to the ICU of another hospital, 
we considered that such a continuum constituted a single 
ICU stay.

Since the objective of this study was an assessment of 
the ALOS in ICU of COVID-19 patients, 8 of the above-
mentioned 67 stays were excluded from the analysis: first, 
one of the 57 patients with a confirmed RT-PCR posi-
tive test had contracted COVID-19 at the hospital while 
this patient was hospitalized for post-complications after 
a kidney transplantation, and the record file highly sug-
gested an ICU stay relating more to these complications 
than to COVID-19 infection. Conversely, only three of 
the ten patients with the radiological evidence of viral 
pneumonia were included in the analysis: seven patients 
had clinical characteristics suggesting that the ICU stay 
might be not mainly related to COVID-19 (e.g., liver 
lesions, massive cerebral infarction, …), and were there-
fore excluded from the study.

Statistical analyses
Data are expressed as mean (95% confidence interval 
(CI)) or median [interquartile range (IQR)], and repre-
sented according to the Kaplan–Meier estimator [15]. In 
addition, we examined how the ICU ALOS estimates of 
COVID-19 patients issued from two estimation meth-
ods evolve and compare while the cumulative number of 
available stays increases along the course of the outbreak. 
All analyses were made with R statistical software version 
3.6.1 and censored data were fitted with the use of the 
flexsurv package. The two methods compared were the 
following.

Discharged patients’ estimation (DPE)
This first method applies a straight-forward calculation: 
all ICU stays of the series for which the discharge date 
is before or equal to a given follow-up date of interest 
were considered (and only such stays were considered). 
Reported ALOS estimate was the mean LOS of those 
already discharged patients. Reported LOS median and 
quartiles were calculated on the same patients.

Censored patients’ estimation (CPE)
This second method takes into account the inherent 
censored characteristic of longitudinal data: consider-
ing a given follow-up date of estimation, all previously 
admitted patients were considered, whether or not they 
were already discharged. A parametric distribution 
(e.g., exponential, gamma or Weibull) was fitted to the 
whole set of patients. Such a method for appropriately 

analyzing time-to-event censored data belongs to the 
standard framework of methods of survival analysis [15, 
16]. Reported ALOS estimates, as well as LOS medians 
and quartiles, are predictions based on this parametric 
model.

Additional comparisons
In order to demonstrate the generalizability of our 
results, these two methods were also compared using two 
simulation studies. Both considered a 30-bed ICU with 
as many patients admitted on day 0 and new patients 
admitted as soon as the previous ones were discharged. 
In the first study, simulated LOS were sampled with 
replacement from the 59 observed LOS in ZHWU. Such 
a simulation allows to be free from the observed sched-
ule in practice, including the order of occurrence of the 
lengths of stay observed. The simulation forces the ICU 
to be initiated in an already saturated functioning admit-
ting COVID-19 patients. The LOS of the patient still in 
the ICU at the date of last follow-up was imputed. In 
the second study, LOS were sampled from a parametric 
gamma distribution in order to explore how estimates 
evolve with time in a situation where the true distribu-
tion is known.

Results
The median age of the patients was 62 years [IQR 52–70] 
and 38 (64%) were men. The time-course of the ICU stays 
of the 59 COVID-19 patients is shown in Fig. 1a. At the 
date of last follow-up, April 16, one patient was still in the 
ICU, 21 deaths (36%) had occurred in the ICU, and the 
37 patients discharged alive from the ICU were also all 
discharged alive from the hospital.

Invasive mechanical ventilation procedures concerned 
40 (68%) patients: stays involving only noninvasive ven-
tilation concerned 11 patients, stays involving only 
mechanical invasive ventilation concerned 12 patients, 
and 17 patients had shifted from one type of ventila-
tion to another during the course of their stay. The mean 
and median estimates for the duration of mechanical 
invasive ventilation was 21.6  days (95% CI 15.4–28.7) 
and 12.0  days [IQR 8.5–31  days], respectively. The 
corresponding estimates for noninvasive ventilation 
were 5.6  days (95% CI 3.9–7.8) and 3.5 [IQR 1.9–3.0], 
respectively.

Figure  1b shows the cumulative number of admis-
sions and discharges according to time. At the date 
of last follow-up, over 3  months (99  days) had passed 
since the date of the first admission, January 8. Fig-
ure  1c shows the evolution of DPE and CPE-based 
ALOS estimates according to the accumulating data 
that become available as time passes. Exponential, 
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Fig. 1  Timeline of the 59 COVID-19 cases treated in the intensive care unit (ICU). a For each case are plotted admission and discharge dates, periods 
of ventilation, and vital status at discharge. b Cumulative numbers of admissions and discharges according to time, with discharged patients’ 
lengths of stay (LOS). c Evolution of the estimates of ICU average LOS issued from the two methods of estimation according to the date chosen for 
estimation. The expected estimate is shown together with the corresponding 95% confidence interval. CPE, method including censored cases; DPE, 
method considering only stays for which the patient was already discharged from ICU at the date of estimation. Whenever some patients of the 
cohort remain treated in the ICU at the date of follow-up, c indicates that DPE yields a biased underestimation of ALOS: discharges observed early 
are more likely to concern patients with a short LOS or conversely, the discharges occurring at the end of the process are more likely to concern 
patients with a long LOS. b illustrates the latter pattern: nine out of the 10 first occurring discharges concern LOS < 15 days, while eight out of the 10 
last occurring discharges concerned LOS > 30 days
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Weibull, and gamma distributions led to similar fits of 
the data—with a delayed convergence for the exponen-
tial distribution—and we retained the gamma distribu-
tion for reporting CPE. On February 8, 1 month after 
the first admission date, 11 (19%) patients had been dis-
charged from the ICU and the corresponding estimate 
of ALOS with DPE was 18.0  days (95% CI 12.2–27.0), 
nearly twice that of DPE which was 10.0 days (95% CI 
6.9–13.1). On March 8, 2 months after the first admis-
sion date, 38 (64%) patients had been discharged and 
the estimate of ALOS issued from DPE and CPE at that 
date was 13.0  days (95% CI 10.4–15.6) and 23.1  days 
(95% CI 18.1–29.7), respectively. Under the assumption 
that the parametric distribution used in CPE is well 
fitted to the data, the two methods should converge 
towards a similar estimate when no censoring data 
remain, i.e., when all patients of the cohort have been 
discharged: while only one patient remained in the ICU 
at the last date of follow-up, April 16, ALOS with CPE 
and DPE was 21.1 days (95% CI 17.5–25.3) (which con-
stitutes the most accurate estimate on the study data 
set) and 20.2  days (95% CI 16.2–24.3), respectively. 
CPE estimate of hospital ALOS was 30.6 days (95% CI 
26.2–35.3) and median duration of hospital LOS was 
27.0 days [IQR 16.5–39.0]. Whenever some patients of 
the cohort remain treated in the ICU at the date of fol-
low-up, DPE yields a biased underestimation of ALOS: 
discharges observed early are more likely to concern 
patients with a short LOS or conversely, the discharges 
occurring at the end of the process are more likely to 
concern patients with a long LOS. Figure 1b, in which 
the LOS corresponding to each discharged patient is 
indicated along the discharge curve, illustrates this pat-
tern: 9 out of the 10 first occurring discharges concern 
LOS < 15 days, while eight out of the 10 last occurring 
discharges concerned LOS > 30  days. In the end, the 
simulations shown in Additional file  1: Appendix S1 
demonstrate the generalizability of the biased pattern 
of DPE, and the unbiased pattern of CPE.

Figure  2a presents a Kaplan–Meier estimator and 
indicates that the median ICU LOS is around 16 days. 
The corresponding estimate issued from CPE is slightly 
higher, at 17.4  days, because the corresponding para-
metric fit is impacted by the substantial frequency 
of very long stays: Fig.  2b shows the LOS distribu-
tion and 14 out of the 59 patients (24%) had a length 
of stay ≥ 30  days. The relatively high frequency of 
such patients with a very long LOS explains why the 
expected estimates of ALOS shown in Fig. 1c requires 
a substantial delay until remaining stable. Interestingly, 
among the 14 patients with a LOS ≥ 30 days, 8 had died 
while the total number of observed deaths in the cohort 
was 21. The fact that 38% (8/21) of the deaths observed 

occurred in patients who had an ICU stay ≥ 30 days also 
indicates that obtaining a reliable estimate of the mor-
tality rate in the patients admitted to the ICU as well 
as obtaining a reliable ALOS of the individuals dying in 
the ICU also requires waiting a substantial delay after 
the beginning of the outbreak.

Discussion
Taking the COVID-19 outbreak as an emblematic exam-
ple of the first outbreak of a threatening pandemic due 
to a novel infectious agent, the present study demon-
strates the importance of obtaining a reliable estimate of 
the ICU ALOS in such situations. The study also recalls 
that appropriate methods of estimation require the inclu-
sion of censored cases in the analysis, and we also dem-
onstrate the important bias associated with calculations 
only based on the stays of already discharged patients. 
Importantly, the bias inherent of the latter method is 
not at all sensitive to sample size or to the consideration 
of factors potentially associated with ICU ALOS value 
(e.g., variability from one center to another). For exam-
ple, whatever the number of patients and the variability 
of the numerous centers involved in the studies of Guan 
et al. [17] based on National data from China and in the 
study of Grasselli et  al. [5] based on 72 hospitals from 
Lombardy mentioned in Table 1, the provided estimates 
were biased. Finally, whenever patients of the popula-
tion treated in the ICU with a long LOS are observed at 
a substantial frequency, as was observed in the present 
reported series, the bias relating to inappropriate meth-
ods might be especially important.

Although the present study shows that ALOS con-
stitutes an important parameter, we failed to find any 
observational study of COVID-19 cases published in 
the early phase of the epidemic that reported ALOS. 
Nevertheless, several of these studies had reported 
median estimates of ICU LOS and such a choice is per-
fectly understandable: since ICU LOS is not normally 
distributed, a reporting of median and IQR instead of 
the mean is recommended. The medians of ICU LOS 
reported [6–8, 17, 18] (see Table 1) often concern a par-
ticular sub-population (e.g., patients who died, patients 
who survived), ranged from 4  days (estimate consid-
ering six patients who died in the ICU) to 11  days 
(estimate reported in the same study and based  on 12 
patients discharged alive from the ICU) [18], and raise 
concerns in terms of the potential bias of the reported 
estimates (see Table  1). These concerns may be then 
extended to modeling studies [9, 10, 12, 13, 18] that 
will naturally parameterize their forecasts according 
to the observational data reported (Table  1). The data 
of the series reported here yielded an estimate of ICU 
ALOS at 21.1  days (95% CI 17.5–25.3) and a median 
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ICU LOS at 17.4 days [IQR 9.6–28.7]. These estimates 
are well above estimates that were reported in the early 
phase of the epidemic. They  are associated with sev-
eral strengths. First the whole study time-course lasted 
99  days, enough time had passed for allowing a last 
date of follow-up at which all patients but one were dis-
charged. To our knowledge, such a resulting quasi-com-
plete distribution of the LOS observed in a given series 
of COVID-19 cases (see Fig. 2b) has not been reported 
to date, and in addition, such a data set is indeed appro-
priate for assessing estimation methods since the tar-
get value of the estimate is nearly perfectly known (only 

one stay remained censored). Second, the high values 
reported here are based on a reasonable sample size 
(n = 59) and our study demonstrates that an unbiased 
estimate at a reasonable distance from the beginning of 
the epidemic is inherently higher than that issued from 
a biased calculation a short time after the beginning of 
the outbreak. Nevertheless, our study also has some 
limitations. The study is monocentric and therefore, the 
extrapolation of our estimates to other settings is ques-
tionable. The gamma distribution-based CPE method 
allowed a reasonable ALOS estimate at the beginning 
of the epidemic, but other distributions might better 
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fit data from other settings. Because it is unbiased, the 
CPE method should nevertheless always be preferred, 
and the choice of associated simple parametric distri-
butions should be favored as compared to more com-
plex distributions whenever corresponding fittings are 
similar. The estimate issued from Wuhan data is also 
inherently adjusted for many co-factors with a likely 
influence on ICU LOS that may vary from one place to 
another and/or with time. For example, one may think 
about the impact of disease knowledge on triage deci-
sions and on the decision to withdraw early mechanical 
ventilation based on refinement of prognostic factors 
(ethical issues), bed availability and pressure of this 
threatening epidemic on the organization of the health-
care system likely modifies the characteristics of admit-
ted patients as well as various specific characteristics 
of the units (including cultural behaviors), accumulat-
ing experience with COVID-19 patients likely improves 
management procedures according to time. Ideally, 
estimates for different spatiotemporal settings should 
be based on observational data  directly collected in 
corresponding settings for guarantying estimates 
appropriately adjusted with co-factors. However, such 
generalizability issues relating to estimate variability 
according to spatiotemporal conditions also stands for 
most studies reported to date, and devising a univer-
sal validated model able to adjust for any spatiotem-
poral condition worldwide is a very ambitious work, 
far beyond the object of the present study. The main 
outcome of this study is alerting the community about 
three elements. First, all scientists working on COVID-
19 must realize that when dealing with data relating to 
LOS, they should imperatively use appropriate methods 
devoted to the analysis of censored data. Such methods 
are not original, they belong to the standard tools used 
in the domain of survival analysis and are easily avail-
able in any statistical software. There is no reason for 
avoiding their usage, and the reader will find an illustra-
tive computer code in Additional file  2: Appendix S2. 
An additional strength of these methods—illustrated 
in Additional file 2: Appendix S2—is their ability to fit 
individual characteristics of patients with multivariable 
models to predict LOS adjusted to co-factors explic-
itly considered in the model formula. Such a modeling 
strategy may for example be deployed for documenting 
variations between different recruitment settings or for 
providing estimates in specific strata of the population. 
A side result of the analyses made in the present study 
suggests that the fatality rate of COVID-19 patients 
in the ICU might also be underestimated, and on this 
topic, the present study shares many perspectives with 
the work of Lipsitch et al. on the biases associated with 
the estimation of case-fatality risks [19]. Second, in the 

context of the first outbreak of a novel infectious agent, 
some estimates concerning time-to-event data such as 
hospital LOS, ICU LOS, duration of ventilation, time of 
illness onset to ICU admission, etc., constitute a kind 
of critical food required to feed forecast models and 
these models are very important in many issues such as 
exploring and comparing mitigation scenarios, or opti-
mizing preparedness. Therefore, enhancing the quality 
of the above-mentioned estimates is an important con-
cern and our study suggests that there is room for such 
enhancements in the analyses of COVID-19 epidemic. 
Third and to conclude, whenever the estimates reported 
in this study would be generalizable to other settings, 
then this is bad news: long ICU LOS as reported here 
imply that occupied beds remain unavailable for a long 
time and this adds additional pressure to the surge in 
ICU beds encountered in many places worldwide.

Conclusion
Based on this complete series of consecutive cases 
together with simulated cases, the present work dem-
onstrates that ICU_ALOS estimates used in most 
models to date may be importantly underestimated. 
In such a context of novel infectious agent, this work 
advocates for an urgent application of widespread sur-
vival analysis tools to properly estimate ICU_ALOS and 
other critical parameters relying on censored time-to-
event data. Accurate estimation of these parameters, 
on which rely forecast models, is crucial to ensure con-
sistency of mitigation and preparedness scenarios, as 
attested by the worldwide concern over ICU bed occu-
pancy in the current COVID-19 crisis.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1361​3-020-00749​-6.

Additional file 1: Appendix S1. Simulation study.

Additional file 2: Appendix S2. Unbiased average length of stay estima-
tion—an illustrative example.

Acknowledgements
Not applicable

Authors’ contributions
The decision of performing the study emerged from informal discussions 
involving NL, XZ, FC, BR, YZ, and GH. Study conception and design: NL and GH. 
Data acquisition: XZ and YZ had full access to all of the raw data in the study 
and can take responsibility for the integrity of the data. Analysis: NL and GH. 
Interpretation of data: NL, XZ, FC, BR, YZ, and GH. First draft of the article: NL 
and GH. All authors read and approved the final manuscript.

Funding
This study has benefited from the support of the National Natural Sci-
ence Foundation of China (81900097 to Dr. Xianlong Zhou) and from the 
Emergency Response Project of Hubei Science and Technology Department 

https://doi.org/10.1186/s13613-020-00749-6
https://doi.org/10.1186/s13613-020-00749-6


Page 9 of 9Lapidus et al. Ann. Intensive Care          (2020) 10:135 	

(2020FCA023 to Pr. Yan Zhao). The funders had no role in: study design; collec-
tion, analysis, and interpretation of data; writing of the manuscript; prepara-
tion of the manuscript; decision to submit the manuscript for publication.

 Availability of data and materials
All data used in this article are explicitly shown in Figs. 1 and 2 of the article. 
Any request for additional details must be sent to Drs. Zhao and Zhou.

Ethics approval and consent to participate
This study was approved by the Medical Ethics Committee, ZHWU (Clinical 
Ethical Approval No. 2020005). The informed consent was waived by the 
Medical Ethics Committee for emerging infectious disease.

Consent for publication
Not applicable.

Competing interests
Prof. Carrat reports personal fees from SANOFI, personal fees from IMAXIO, 
outside the submitted work. The other authors have nothing to disclose.

Author details
1 Sorbonne Université, INSERM, Institut Pierre Louis D’Épidémiologie Et de 
Santé Publique, AP-HP, Hôpital Saint-Antoine, Unité de Santé Publique, 27 
Rue Chaligny, 75571 Paris Cedex 12, France. 2 Emergency Center, Zhongnan 
Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China. 
3 Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan 
Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China. 
4 Sorbonne Université, UMR INSERM 1166, IHU ICAN, and AP-HP, GH Pitié-
Salpêtrière, Service d’Accueil des Urgences, 75013 Paris, France. 5 Sorbonne 
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