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Background: Assessment and maintenance of end-organ perfusion are key to resuscitation in critical illness,
although there are limited direct methods or proxy measures to assess cerebral perfusion. Novel non-invasive meth-
ods of monitoring microcirculation in critically ill patients offer the potential for real-time updates to improve patient

Main body: Parallel mechanisms autoregulate retinal and cerebral microcirculation to maintain blood flow to meet
metabolic demands across a range of perfusion pressures. Cerebral blood flow (CBF) is reduced and autoregulation
impaired in sepsis, but current methods to image CBF do not reproducibly assess the microcirculation. Peripheral
microcirculatory blood flow may be imaged in sublingual and conjunctival mucosa and is impaired in sepsis. Retinal
microcirculation can be directly imaged by optical coherence tomography angiography (OCTA) during perfusion-
deficit states such as sepsis, and other systemic haemodynamic disturbances such as acute coronary syndrome, and
systemic inflammatory conditions such as inflammatory bowel disease.

Conclusion: Monitoring microcirculatory flow offers the potential to enhance monitoring in the care of critically ill
patients, and imaging retinal blood flow during critical illness offers a potential biomarker for cerebral microcirculatory
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Introduction

Critical illness with multiple organ dysfunction is charac-
terised by complex physiological and metabolic responses
requiring support and optimisation of organ systems in
the intensive treatment unit (ITU) [1]. Common aetiolo-
gies include sepsis (60%), trauma, and perioperative care.
Sepsis is a systemic inflammatory response to infection,
mediated by the pathogen and host factors, ultimately
causing multiple organ failure [2], and is a growing global
concern with an estimated 48.9 million incident cases
recorded worldwide in 2017, 11 million of which were
fatal [3]. Septic shock describes a profound haemody-
namic alteration associated with organ dysfunction,
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including hypovolaemia and myocardial depression [4].
Early diagnosis of sepsis and prompt treatment to reduce
multiple organ failure reduces mortality [5], but survivors
often have physical and neurocognitive disability referred
to as post-intensive care syndrome (PICS) [6]. Attempts
to improve perfusion and end-organ microcirculation
using inotropes and fluids have produced variable results
[7].

Microcirculation facilitates tissue oxygenation and
the exchange of substances between tissues and blood.
In septic shock, physiological haemodynamic param-
eters, such as mean arterial pressure (MAP), may not
be indicative of microcirculatory perfusion [8]. Patients
with sepsis often have microcirculatory alterations, such
as reduced functional capillary density, which reduces
oxygen delivery to vital organs and plays a key role in the
development of organ dysfunction [4, 9, 10]. While the
extent of these microcirculatory alterations in the brain is
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less well characterised than in other organs, post-mortem
examination of septic patients demonstrated multiple
small ischaemic lesions, suggesting microvascular insuf-
ficiency [11]. Sepsis-associated brain dysfunction (SABD)
is a common sepsis-related organ dysfunction [12], and
probably involves reduced cerebral blood flow (CBF)
causing cerebral ischaemia [12]. Compromised cerebral
blood supply often causes both immediate and delayed
irreversible damage with associated neurocognitive
decline and poor outcome [13]. It is, therefore, essential
to be able to monitor CBF during critical illness.

The retina and brain share similar microvascular anat-
omy, and while direct visualisation of CBF is difficult,
retinal imaging is comparatively convenient [14]. Reti-
nal structural and blood flow changes associated with
systemic and central nervous system illness are increas-
ingly reported [15—17] with the use of ocular imaging to
assess systemic disease termed “oculomics” [18]. Retinal
changes may, therefore, associate with CBF in critically ill
patients, offering a novel biomarker to monitor in real-
time and reduce cerebral hypoperfusion.

This review discusses the relationship between cerebral
and retinal blood flow, and the relevance of that relation-
ship to systemic pathology and monitoring microcir-
culatory perfusion in critical illness, focussing more on
sepsis.

Cerebral and retinal blood flow autoregulation

Cerebral blood flow autoregulation

The human brain consumes 20% of the body’s energy at
rest, dependent on CBF to ensure the delivery of oxygen,
nutrients and removal of metabolic waste products [19].
Global or focal hypoperfusion rapidly results in brain
damage.

Under normal physiological conditions, blood flow
to the brain remains constant, in part due to the contri-
bution of large arteries to vascular resistance, but also
because of autoregulation [20]. CBF autoregulation is
the ability of the brain to maintain relatively constant
blood flow despite changes in perfusion pressure while
matching flow to local metabolic demand [20]. Cerebral
perfusion pressure (CPP) is determined by MAP and
intracranial pressure (ICP), where autoregulation adjusts
vascular resistance to maintain CBF. CBF autoregulation
is complex, with multiple proposed overlapping regula-
tory mechanisms, including myogenic, neurogenic, met-
abolic and endothelial regulation [21]. Most data suggest
reduced CBF and impaired CBF autoregulation in sepsis
[22].

Cerebral microcirculation
The cerebral microcirculation is the driver of oxygen
transport and waste removal in the cortex [23], supplied
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by the penetrating arteriolar network from the brain sur-
face. Every neurone in the brain is within 20 um of a cap-
illary [24], receiving oxygen and nutrients yet remaining
protected from fluctuations in plasma composition, cir-
culating proteins and immune cells by the blood—brain
barrier (BBB). Endothelial cells (EC) and their tight cell
junctions are the fundamental constituents of the BBB
and regulate paracellular transport [24].

The neurovascular unit is in part responsible for the
coupling of blood flow with brain activity and is made up
of EC, pericytes, astrocyte end-feet and vasoregulatory
nerve terminals [25]. Pericytes project stellate, finger-like
processes that ensheath the capillary wall [26] and con-
tract or dilate in response to vasoactive mediators, such
as nitric oxide (NO). NO is produced by neuronal nitric
oxide synthase (nNOS) or neural pathways [27] to alter
capillary diameter in autoregulation, shown in vivo in rat
retina and ex vivo in cerebellar slice cultures [28]. This
neurovascular coupling is impaired in the early stages of
sepsis [29]. EC regulate CBF through the production of
vasodilatory factors, including NO and vasoconstrictors
such as endothelins, which bind to ET, receptors in the
cerebrovascular smooth muscle, although endothelins
also have vasodilatory effects when binding to ETy, recep-
tors on EC themselves [21].

Retinal microcirculation

The retinal vascular beds, derived from the central
retinal artery, include the radial peripapillary capil-
lary plexus (RPCP) in the nerve fibre layer, the super-
ficial vascular plexus (SVP) spanning the ganglion cell
layer (GCL) and inner plexiform layer, the intermediate
capillary plexus (ICP) sitting between the inner plexi-
form layer and inner nuclear layer, and the deep capil-
lary plexus (DCP) spanning the inner nuclear layer and
outer plexiform layer [30]. These supply the inner ret-
ina, including the retinal ganglion cells, while the outer
retina derives oxygenation and nutrition from the cho-
riocapillaris of the choroid (Fig. 1) [31]. Campbell et al.
propose OCTA nomenclature as the RPCP and SVP be
grouped into the superficial vascular complex (SVC),
with the ICP and DCP grouped into the deep vascular
complex (DVC) to highlight anatomic location of the
ICP at the inner plexiform/inner neuronal layer inter-
face [30].

The foveola centralis is a depressed, avascular area of
the macula, also referred to as the foveal avascular zone
(FAZ). It is this area which allows the most distinct vision
because of the high cone density and absence of blood
vessels [31]. The circulation is particularly vulnerable in
the FAZ, as the absence of retinal blood vessels leaves the
cones completely dependent upon oxygen and nutrient
delivery from the underlying choriocapillaris [31]. The
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FAZ is therefore highly sensitive to ischaemic events and
because of this, can act as an indicator of several patho-
logical processes [32]. Enlargement of the FAZ area has
been associated with ischaemia in diabetic retinopathy
and retinal vein occlusion [32].

The internal carotid artery gives rise to the ophthal-
mic artery, from which the central retinal artery arises
[33], entering the optic nerve (ON) 10—-12 mm behind
the globe [33]. The choriocapillaris is derived from the
short posterior ciliary arteries, which also branch off the
ophthalmic artery. The conjunctiva covers the sclera and
lines the inside of the eyelids, and is also supplied by the
ophthalmic artery [34].

Retinal blood flow autoregulation

Similar to CBEF, retinal blood flow depends on the balance
between perfusion pressure in the ophthalmic artery and
the resistance of the retinal vascular bed, and is autoregu-
lated to mirror cerebral perfusion in healthy individuals
[35, 36]. The retina has the highest density of microvas-
cular pericytes in the body [36, 37], contributing to the
myogenic vascular autoregulation of blood flow and pro-
viding structural support to blood vessels [36]. Changes
in ocular perfusion pressure and altered metabolic
demand initiate an autoregulatory response [38], main-
taining retinal but not choroidal or conjunctival blood
flow [35].

Retinal circulation lacks autonomic innervation [39]
and is dependent on local vasogenic factors acting on the
neurovascular unit [39, 40]. Despite the absence of sym-
pathetic activation, retinal blood flow is able to remain
constant over a range of intraocular pressures (IOP),
which naturally fluctuates in daily life [38], although an
elevated IOP above 40 mmHg reduces retinal blood flow
[41]. Local metabolic factors mediating retinal autoreg-
ulation include endothelin-1 which is secreted by EC
and acts as a vasoconstrictor, affecting retinal vascular
endothelium, pericytes and the choroid [39]. The blood—
retina barrier (BRB) has a similar structure to the BBB
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and protects retinal neurones from fluctuating plasma
composition [42].

Assessment of cerebral blood flow in sepsis

Functional imaging techniques to assess CBF in real-
time include direct methods: triple oxygen (*O) posi-
tron emission tomography (!OPET), single-photon
emission computed tomography (SPECT), and mag-
netic resonance angiography (MRA); and indirect
methods: computed tomography perfusion (CTP),
functional magnetic resonance imaging (fMRI) and
near-infrared spectroscopy (NIRS) [43-45]. OPET
and SPECT use isotopes which are expensive, time-
consuming, and expose the patient to radiation. MRA
is also expensive and time-consuming, and has poor
temporal resolution. fMRI assesses regional variation
in the ratio of oxy- to deoxyhaemoglobin, which associ-
ate with local changes in CBF, but is primarily sensitive
to venous blood flow [44]. However, use of these imag-
ing modalities to assess CBF in septic patients has not
yet been reported. Further, these techniques require
the transfer of the patient to a radiology unit [46], and
the transfer of critically ill patients exposes them to
increased risk of deterioration [47].

NIRS monitors cerebral cortical arterial, venous and
capillary oxygenation at the capillary level, assessing
fluctuations in microcirculatory CBF [45, 48]. However,
there is considerable variation in vessel measurements
between patients, and measurements are attenuated by
pigmented hair and skin because melanin attenuates
light transmission [48]. A reduction in NIRS signal in
patients with sepsis in the Emergency Department was
associated with mortality [49]. However, the ability to
differentiate between clinical outcome groups of inter-
est was limited by variability [49].

Transcranial Doppler ultrasound (TDU) is a non-
invasive, fast, real-time technique that uses the Doppler
effect to assess moving red blood cells (RBC) within
the cerebral basal arteries [50], commonly the middle
cerebral artery (MCA). Current clinical and research
applications include: identifying the MCA and basilar

(See figure on next page.)

Fig. 1 Optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) of the retina. a £n face fundus image
showing the optic disc and the macula. b OCT image showing the retinal layers in cross-section passing through the fovea centralis at the

location indicated by the bold central arrow in (a). The vitreous (inside of the eye) is at the top of the image and the choroid capillary network
(choriocapillaris) is at the bottom. The retinal nerve fibre layer (RNFL) is outlined in red, the inner nuclear layer in blue and the photoreceptor nuclei
in yellow, using the manufacturer’s segmentation algorithm. ¢ £n face OCTA image of the superficial vascular plexus (SVP) at the level of the retinal
ganglion cell nuclei (retinal level indicated by the tip of the connecting arrow). d £n face OCTA image of the intermediate capillary plexus (ICP) at
the inner border of the inner nuclear layer (retinal level indicated by the connecting arrow tip). e £n face OCTA image of the deep capillary plexus
(DCP) at the outer border of the inner nuclear layer (retinal level indicated by the connecting arrow tip). f £n face OCTA image of the choriocapillaris

(retinal level indicated by the connecting arrow tip)
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artery vasospasm after subarachnoid haemorrhage,
blood flow assessment in the MCA after acute ischae-
mic stroke, intraoperative monitoring during coronary
artery bypass graft, detecting evolving hypoperfu-
sion after traumatic brain injury (TBI), and identifying
lower cerebral blood flow velocity in Alzheimer’s dis-
ease (AD) [50, 51]. TDU demonstrates altered cerebral
autoregulation in 50% of the patients with sepsis and its
early stage loss was associated with SABD [12, 52, 53].

Sidestream dark field (SDF) microscopy provides dynamic
bed-side images of surface microcirculation. Illumination is
achieved by surrounding a central light guide by concentri-
cally placed light-emitting diodes, providing SDF illumina-
tion [54]. Light from the illuminating outer core of the SDF
probe penetrates the tissue and illuminates the microcircu-
lation by scattering [54]. SDF requires surface exposure to
assess CBE, thus limiting clinical application, but an ovine
model of septic shock [10] showed that the onset of septic
shock was associated with decreases in cortical cerebral
perfused microcirculatory vessel density, the proportion of
small perfused vessels and functional capillary density, evi-
dencing reduced microcirculatory flow. These changes were
not prevented by fluid administration and were unrelated
to changes in MAP and cardiac index, providing evidence
of a dissociation between brain perfusion alterations and
global perfusion pressure [10]. In a further study, Taccone
et al. evaluated the relationship of disturbances in brain tis-
sue oxygenation with microvascular alterations in the ovine
septic model [55]. Cerebral functional capillary density and
proportion of small perfused vessels significantly decreased
from baseline to septic shock onset. Brain lactate:pyruvate
ratio (a measure of tissue hypoxia) was increased and brain
oxygen tension reduced, likely due to impaired microvascu-
lar perfusion [55].

Assessment of the retina and retinal blood flow
ocT
Optical coherence tomography (OCT) allows non-con-
tact, high-resolution cross-sectional retinal imaging [56].
A low coherence light beam is directed toward the target
tissue and split into two paths [57]. While one of the light
paths travels to the sample tissue—being scattered and
reflected back as it passes through—the other travels to a
reference mirror and is also reflected back from a known
distance [58]. The two reflected light beams interact to
produce interference patterns—which depend on the dif-
ferent path lengths—and amplitude information, which
makes up the axial scan (A-scan) [59]. Multiple adjacent
A-scans captured at several depths combine to produce a
2-dimensional B-scan. Adjacent B-scans form a volumet-
ric retinal image.

Time-domain OCT (TD-OCT) was the first developed
OCT which required a moving reference mirror, so had a
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scan rate of only 400 A-scans per second and a resolution
of 8—10 pum [56].

Spectral-domain OCT (SD-OCT, a type of Fourier
domain) followed, managing 20,000—130,000 A-scans
per second and a resolution of 5-7 pum, by detecting
multiple frequencies of light simultaneously (Optopol
REVO NX OCT/OCTA, Spectrum, UK) [56].

Swept-source OCT (SS-OCT, also Fourier domain)
uses a tunable laser light source, varying the emitted
frequency to derive reflectivity data for each wave-
length [60]. This increases signal quality in deep tis-
sue compared to SD techniques, because of the greater
penetrance of longer wavelengths.

Laser Doppler velocimetry

The first study attempting to quantify retinal blood
flow in humans in 1985 used bidirectional laser Dop-
pler velocimetry (LDV) [61] to measure retinal blood
flow velocity and vessel diameters from fundus images,
with arteriolar diameters at the site of LDV measuring
between 39 and 134 pm and venules measuring from
64-177 pm. However, this and subsequent studies show
high variability in mean blood flow, which is most likely
explained by inter-individual variability and the fact
that LDV requires good fixation by the participant for
up to 45 min [61-63]. LDV would, therefore, be unsuit-
able for use in most clinical settings.

Doppler OCT (DOCT) gives quantitative volumet-
ric information on blood flow in arteries and veins [64],
but not the retinal microcirculation. However, there are
often errors in vessel diameter extraction due to shadow-
ing effects behind the vessel obscuring the boundary [65].
Further, eye movement alters the Doppler angle, causing
artefact and limiting clinical application to date [65].

Fundus photography and fundus fluorescein angiography
Fundus photography is used extensively in ophthalmology,
with retinal fundus colour imaging allowing retinal vascu-
lar evaluation [66], and is now possible using smartphone
attachments which allows portability [67]. However, clas-
sifying arteries and veins relies on the colour and diame-
ter of the blood vessels, which may be unreliable between
images and does not directly assess microcirculation [66].

Fundus fluorescein angiography (FFA) has been used
to image retinal blood flow after intravenous fluorescein
injection since the 1930s [68], and images the superficial
retinal vasculature, which can be obscured by leakage
or haemorrhage from surrounding capillaries [69] and
which itself obscures the deeper vasculature [70]. It is
therefore not routinely possible to image all retinal capil-
lary layers using FFA [70].
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OCT angiography

OCT angiography (OCTA), developed from OCT, uses
moving RBC as an intrinsic contrast medium to give
3-dimensional images of retinal and choroidal blood
flow [71] without the need for injectable contrast [72].
OCTA is non-contact, non-invasive, faster and cheaper
to run than FFA, with no risk of morbidity from allergic
reactions to fluorescein [73], although it does not pro-
vide direct information on vascular permeability. Unlike
FFA, OCTA is the result of mathematic algorithms which
allow estimation of reflectivity and ultimately, for OCTA,
allow blood flow detection in arteries, veins and capillar-
ies [74, 75]. Algorithms utilise the component differences
of the varying B-scans [76]. For instance, the OCT signals
of SD-OCT and SS-OCT contain intensity (the strength
of reflected signal) and phase (the time taken for the
reflected signal to return) information; therefore algo-
rithms may be based on intensity, phase, or both intensity
and phase of OCT signals, to determine blood flow [77].

Examples of other approaches used for OCTA include:
split-spectrum amplitude decorrelation angiography
(analyses amplitude changes of the OCT signal, while
splitting the spectrum reduces bulk-motion noise [78]);
optical microangiography (includes directional informa-
tion); and OCTA ratio analysis (intensity ratio calculation
improves microvasculature detection sensitivity [77, 77]).

OCTA is now used alongside OCT and FFA in the
diagnosis and management of numerous retinal diseases
[80], including age-related macular degeneration and
diabetic retinopathy [81], and in animal research [82].
Recent developments in OCT and OCTA increase port-
ability and show feasibility for use in a critical care set-
ting and therefore the potential to assess retinal blood
flow in this group of patients [83], although the number
of images may be limited within the context of usual ITU
care, and by unconscious patients and semi-conscious
patients who may be uncooperative and prevent imag-
ing entirely [83]. In an ITU clinical environment, two
operators are needed to acquire the scans, the devices
are bulky, and given the significant cost of the device, it
needs to be clearer that it provides significant value in
terms of its performance, feasibility and utility in the ITU
environment, including on ventilated patients.

OCTA is not without its limitations, probably the most
significant being scan artefacts caused by eye movement,
or projection artefacts from other retinal vessels. Further,
artefacts show up differently on the scan depending on
what caused them, so it is important to be able to dis-
tinguish between them. Motion artefacts from blinking
show up as dark lines, while artefacts from eye move-
ments show up as horizontal white lines [84]. These
can be reduced with use of an incorporated eye-tracker,
although may still increase acquisition time [84].
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Projection artefacts can result when superficial blood
vessels obscure deeper layers, leading to inaccurate inter-
pretation of deeper vessel blood flow. OCTA platforms
have endeavoured to reduce this by incorporating projec-
tion-masking software, but are unable to minimise pro-
jections in all layers [84].

The many different algorithms used to detect blood
flow and segment retinal layers and capillary boundaries
[77] make comparison of OCTA studies between devices
difficult [74]. Retinal layer segmentation can also be inac-
curate, which may be apparent as dark areas on the en
face OCTA image, requiring manual adjustment prior
to final interpretation [84]. It is also possible for flow
to be incorrectly detected using OCTA, relating to the
time difference between successive B-scans. Normal SD-
OCTA has an interscan time of only 5 ms, so if the flow is
too slow or fast then the B-scans would display no differ-
ence, and therefore show no flow [85].

While the image produced by an OCTA scan shows
the presence or absence of blood flow, it does not give
information on the speed, direction, or volume. Most
commercial devices do not include automated calcula-
tion of these characteristics and the measurements are
not uniform across devices which do [85], creating dif-
ficulty when comparing studies. It is therefore necessary
for some studies to use third party software to quantify
the data, such as measuring the FAZ area and perimeter
[85], or by using either the binary or skeletonised images
to calculate: perfusion density; vessel length density; and
fractal dimension [86].

Finally, as OCTA is relatively new, normative data are
developing [87-89], with some unknowns regarding
the correlation between general parameters and vessel
density [90]. There is systematic variation in FAZ area
between devices (measuring higher with Heidelberg than
Canon devices) but with a very high intraclass correlation
coefficient (ICC) of 0.96 [91], compared to an ICC for
flow index of 0.62-0.67 [92] and vessel density of 0.74—
0.81 [93].

Association of retinal and cerebral neurodegeneration
Structural retinal imaging techniques demonstrate reti-
nal changes associated with systemic disease (Table 1)
[14]. Cerebral neurodegeneration is associated with
retinal neurodegeneration in acute and chronic insults,
including stroke (Merge EyeScanner camera) [94], Par-
kinson’s disease (PD; RTVue XR Avanti SD-OCTA) [95],
AD (Spectralis OCT and dynamic vessel analyser) [96,
97] and Huntington’s disease (HD; Heidelberg Spectralis
OCT) [98].

With cerebral vasculature implicated in various neu-
rodegenerative disorders, retinal neurodegeneration and
vasculature manifestations of these disorders inform the
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retinal—cerebral blood flow relationship [99]. In PD, there
was reduced retinal microvascular density in the super-
ficial capillary layer of PD patients compared to healthy
controls, suggesting either that PD may associate with
cerebral small-vessel disease (SVD), as seen in autopsy
studies, or that PD-associated retinal neurodegeneration
reduces retinal blood flow [95]. In PICS associated with
cognitive impairment [100], the retinal vascular changes
during acute illness and afterwards may similarly mirror
cerebral hypoperfusion and microvascular dysfunction.

OCT demonstrates retinal structural changes in AD
patients compared with healthy individuals, including
GCL loss [101] and ganglion cell inner plexiform layer
loss in certain sections of the retina [102]. In patients
with mild cognitive impairment (early AD) and estab-
lished AD, OCTA showed lower retinal blood flow by
measuring blood flow rate and blood flow velocity in
both retinal arteries and veins, showing lower vascular
density in the macular, foveal and parafoveal zones and
larger FAZ areas compared to cognitively normal patients
[102-104].

In a study investigating the relationship between retinal
arterial disease and cerebral SVD, 60% of patients with a
systemic atherosclerotic disease showed signs of cerebral
SVD on MRI [105]. 92% of these individuals had at least
one retinal arterial abnormality irrespective of the pres-
ence of hypertension, suggesting that retinal signs are
more sensitive than SVD on cerebral MRI in detecting
cerebrovascular disease [105].

Cerebral neurodegenerative disorders cause retinal
structural changes and secondary retinal blood flow
changes, whilst cerebrovascular disease also reduces
retinal perfusion, providing evidence that pathological
changes to cerebral perfusion and cerebral neurodegen-
eration both affect retinal perfusion. This is particularly
relevant to critical illness in which cerebral hypoperfu-
sion or hyperperfusion may be both caused by and con-
tribute to cerebral dysfunction and damage, and altered
retinal blood flow may relate to both systemic hypoperfu-
sion and sepsis-induced neurodegeneration [22].

Conjunctival and sublingual microcirculation in sepsis

Techniques to monitor surface microcirculatory changes
directly include: SDF videomicroscopy which developed
from orthogonal polarisation spectral (OPS); incident
dark field (IDF) imaging; laser Doppler perfusion imag-
ing (LDPI); and laser speckle contrast imaging (LSCI)
[106]. OPS demonstrates reduced sublingual microvas-
cular blood flow in patients with severe sepsis by direct
visualisation, and correlated microvascular alterations
with survival of septic patients [107], while SDF dem-
onstrates hypoperfusion and increased heterogeneity
in septic microcirculation [108]. The sublingual area is
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the site used most to evaluate microcirculation in criti-
cally ill patients, with SDF the current standard method
to do this [109]. With the introduction of handheld video
microscopes, SDF also allows bedside monitoring of
microcirculation, but it is not yet widely used in clinical
practice [8]. A major drawback of SDF is that it can only
monitor skin and mucosal blood flow and requires direct
contact with the skin, causing pressure and motion arte-
facts, posing technical challenges which reduces video
quality and reliability [110].

IDF uses a green light source that is absorbed by hae-
moglobin to detect RBC [34] with devices optimised for
surface microcirculatory visualisation and may have bet-
ter image quality than SDF imaging [111]. Portable IDF
(Cytocam®-IDF device) demonstrated reductions in all
microcirculatory parameters of the conjunctiva, includ-
ing microvascular flow index (MFI) and total and per-
fused vessel density, in septic patients compared with
healthy individuals [34]. Similarly, in the ovine septic
and haemorrhagic shock model, functional capillary
density and MFI of the conjunctiva capillary microcir-
culation were significantly reduced in septic shock, with
alterations correlating with sublingual capillary micro-
circulation [112]. SDF in a pig sepsis model (Microscan;
Microvision Medical) showed significant decreases in
MFI and proportion of perfused small vessels (venules
and capillaries with diameters <20 um) in the conjuncti-
val, sublingual, jejunal and rectal mucosal microcircula-
tion following sepsis onset [113].

LDPI and LSCI are non-contact techniques, but meas-
ure average Doppler shift and therefore only assess rela-
tive flow changes, normalised to baseline values [106].
In contrast, OCTA requires no contact and has recently
shown suitability for evaluating sublingual microcircu-
lation in healthy volunteers, suggesting it is a promising
method for peripheral (as well as retinal) microcircula-
tory evaluation [8].

Retinal blood flow changes associated with systemic
pathology

Retinal blood flow in cardiovascular and inflammatory
disease

Retinal changes in malignant hypertension are well-rec-
ognised. When patients with malignant hypertension
were compared to controls, some, but not all, measures
of vessel density and skeletal density of the superficial
retinal layer and deep retinal layer were reduced in the
hypertensive group, demonstrating retinal capillary drop-
out associated with malignant hypertension using OCTA
[114]. Retinal capillary density was reduced in the DVP of
patients with poorly controlled blood pressure compared
with those with well controlled blood pressure, further
highlighting the potential role of OCTA to monitor early
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microvascular changes arising from systemic hyperten-
sion [15]. Further studies would answer the extent of
which these changes are associated with microvascular
complications and end-organ damage [114].

Patients with atrial fibrillation have abnormal reti-
nal electrophysiological responses and lower flow den-
sity in the macular and ON SVP on OCTA compared
with healthy controls, which partially normalised when
patients were restored to sinus rhythm, but showed no
evidence of a difference in FAZ area [115].

Patients suffering acute coronary syndromes also have
abnormal retinal blood flow on OCTA, with the lowest
inner retinal vessel density in the highest risk patients
(highest American Heart Association scores and the low-
est left ventricular ejection fractions) [116]. Some early-
stage coronary heart disease patients could be defined as
a high-risk population on OCTA by reduced retinal vessel
density, and reduced choroidal vessel density and blood
flow, suggesting an efficient and non-invasive method
for detection of early-stage coronary heart disease [117].
Taken together, the findings in cardiac disease suggest
that impaired cardiac output reduces retinal blood flow,
especially given the partial normalisation when sinus
rhythm is restored. However, the previous studies dem-
onstrating preserved, autoregulated retinal blood flow
under hypovolaemic stress also suggest that, common
to the studies of systemic and cerebrovascular disease, at
least some of the OCTA abnormalities observed reflect a
long-term vasculopathy.

There was no association between a diagnosis of
Crohn’s disease or ulcerative colitis and retinal blood
flow, but when either group of patients had active disease,
FAZ area was reduced compared to patients in remission,
suggesting altered retinal blood flow autoregulation by
systemic inflammatory status [16]. Systemic sclerosis has
involvement of the microvasculature as one of the earliest
features. OCTA showed significantly decreased foveal,
parafoveal and perifoveal vessel densities in the superfi-
cial capillary plexus, and foveal vessel density in the DCP,
of patients with systemic sclerosis compared with healthy
individuals [118]. These results suggest indicators of reti-
nal vascular injury before patients become symptomatic
[118].

Pregnancy is a state with hyperdynamic circulation and
a finely modulated immune system [119]. Pre-eclampsia
is associated with generalised endothelial dysfunction,
increasing vascular resistance and leakage from blood
vessels and manifesting as hypertension, proteinuria and
oedema, but no microcirculatory changes detectable
by SDF [17]. In contrast, patients in the third trimester
of pregnancy have reduced macular SVP vessel density.
Macular SVP and ICP vessel density in high-risk preg-
nancies are also lower than in low-risk pregnancies, and
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patients with pre-eclampsia also have reduced macular
SVP and ICP, but increased peripapillary SVP perfusion
compared to patients with uncomplicated pregnancy and
normal controls [120].

A prototype handheld SS-OCTA device was used to
capture high-quality vitreoretinal images in awake pre-
mature neonates at risk for retinopathy of prematurity,
with greater imaging speed and detail compared with
currently available handheld SD-OCT devices [121].

Retinal microcirculation in sepsis and haemorrhagic shock
In a pig model of acute respiratory distress syndrome
[122], RNFL thickness was increased and there was
immunostaining for reactive oxygen species HIF-1a and
VEGE-A in retinal arterioles, suggestive of increased
retinal vascular permeability and endothelial dysfunction
[122].

After ovine haemorrhagic shock [123], SVP flow den-
sity on OCTA decreased from 44.7% baseline to 34.5%,
recovering to 46.9% after fluid resuscitation, correlating
with systemic haemodynamic parameters. Conjuncti-
val microcirculation assessed using IDF microscopy also
showed a reduced proportion of perfused vessels from
100% to 72%, which returned to 98.7% after resuscitation
[123]. The alterations in OCTA flow density correlated
with reduced perfused vessel density in IDF of the con-
junctiva and haemodynamic parameters (MAPD, heart rate
and cardiac index all decreased), suggesting that both
the retinal and conjunctival microcirculatory changes
may relate to cerebral perfusion alterations. In contrast,
in a rat haemorrhagic shock model, choroidal blood flow
dropped in proportion to MAP (preceding increases in
serum lactate), but retinal blood flow assessed by OCTA
was maintained [124].

FFA in patients with sepsis demonstrated prolonged
retinal arterial filling time after intravenous dye injec-
tion, associated with fundus signs of retinal vasculopathy
including haemorrhages and microaneurysms, although
retinal arteriolar diameters were not measured [125].
Patients with delayed retinal arterial filling had a lower
cardiac index, higher Acute Physiology and Chronic
Health Evaluation II scores and lower interleukin-6 and
C-reactive protein levels, suggesting an impaired inflam-
matory response [125].

Septic patients in the ITU had increased average
retinal arteriolar calibres (165 um[149-187 pm] vs.
146 pm[142-158 pum], p=0.002) compared with healthy
controls and decreased vascular length density (0.51% vs.
0.64%, p<0.001) on portable fundus photography com-
pared with healthy controls [126].

There is a need for improved monitoring of cerebral
perfusion in a critical care environment to allow perfu-
sion-directed resuscitation, improve patient outcomes,
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and possibly reduce long-term cognitive impairment.
These retinal imaging studies demonstrate that retinal
vessel density and retinal perfusion are affected by sys-
temic haemodynamic changes [116], and the systemic
inflammatory response [16, 118], but also that it does
not simply provide a mirror to systemic haemody-
namic status, being resistant to change in some models
[124] and providing additional information in others
(Table 2) [117, 120, 125].

Conclusions

The reviewed studies demonstrate the link between ret-
inal and cerebral blood flow, and that changes in retinal
perfusion reflect changes in cerebral microcirculation.
Retinal blood flow is altered by systemic and microcir-
culatory hypoperfusion, and is in association with cer-
ebral and retinal neurodegeneration. Conjunctival and
sublingual microcirculation are also altered in sepsis.
Of the different retinal blood flow imaging modalities,
OCTA is the least invasive and is a promising method
for retinal evaluation in the future. Retinal blood flow,
therefore, has potential as a biomarker of systemic dis-
ease, with developing evidence in critical illness and
sepsis.
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