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Post‑resuscitation shock: recent advances 
in pathophysiology and treatment
Mathieu Jozwiak1,2*  , Wulfran Bougouin3,4,5,10, Guillaume Geri6,7,8,10, David Grimaldi9,10 and Alain Cariou1,2,4,5,10

Abstract 

A post-resuscitation shock occurs in 50–70% of patients who had a cardiac arrest. It is an early and transient com-
plication of the post-resuscitation phase, which frequently leads to multiple-organ failure and high mortality. The 
pathophysiology of post-resuscitation shock is complex and results from the whole-body ischemia–reperfusion 
process provoked by the sequence of circulatory arrest, resuscitation manoeuvers and return of spontaneous circu-
lation, combining a myocardial dysfunction and sepsis features, such as vasoplegia, hypovolemia and endothelial 
dysfunction. Similarly to septic shock, the hemodynamic management of post-resuscitation shock is based on an 
early and aggressive hemodynamic management, including fluid administration, vasopressors and/or inotropes. 
Norepinephrine should be considered as the first-line vasopressor in order to avoid arrhythmogenic effects of other 
catecholamines and dobutamine is the most established inotrope in this situation. Importantly, the optimal mean 
arterial pressure target during the post-resuscitation shock still remains unknown and may probably vary according 
to patients. Mechanical circulatory support by extracorporeal membrane oxygenation can be necessary in the most 
severe patients, when the neurological prognosis is assumed to be favourable. Other symptomatic treatments include 
protective lung ventilation with a target of normoxia and normocapnia and targeted temperature management by 
avoiding the lowest temperature targets. Early coronary angiogram and coronary reperfusion must be considered 
in ST-elevation myocardial infarction (STEMI) patients with preserved neurological prognosis although the timing of 
coronary angiogram in non-STEMI patients is still a matter of debate. Further clinical research is needed in order to 
explore new therapeutic opportunities regarding inflammatory, hormonal and vascular dysfunction.
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The concept of post‑resuscitation shock
Outcome of cardiac arrest (CA) remains very poor. 
Over 60% of patients with out-of-hospital cardiac arrest 
(OHCA) will die without sustainable return of spontane-
ous circulation (ROSC) [1]. Among patients with sustain-
able ROSC, intensive care unit (ICU) mortality remains 
high, ranging from 60% [2, 3] to 80% [1, 4] of patients. In-
hospital mortality after OHCA mainly results from dif-
ferent causes including recurrent CA, irreversible anoxic 

brain damage (including brain death), as well as comor-
bid withdrawal of care [5, 6]. In addition, a substantial 
proportion of these post-CA patients will suffer from a 
severe hemodynamic impairment that may worsen organ 
damages and may lead to death in the first hours or days. 
All these complications are closely related to the duration 
of no-flow and low-flow of CA and thus to the severity of 
the oxygen debt of the different organs.

The first description of this post-resuscitation shock 
was provided by Vladimir Negovsky more than 45 years 
ago [7]. In a series of animal experiments and clinical 
observations, he has reported a myriad of clinical and 
biological changes that could be observed as a conse-
quence of the whole-body ischemia and reperfusion pro-
voked by CA. Among these disorders, the hemodynamic 
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impairment is one of the most frequent and most severe 
alterations. Today, it is commonly accepted that after 
resuscitation and ROSC, the combination of tissue 
hypoperfusion and arterial hypotension requiring a con-
tinuous infusion of vasopressor may correspond to the 
most pragmatic definition of this shock [3, 8, 9]. Using 
this definition, the incidence of the post-resuscitation 
shock ranges between 50 and 70% [3, 8, 9]. In a retrospec-
tive cohort of patients admitted in ICU after an OHCA, 
Lemiale et  al. reported a global incidence of 68%, and 
they also identified some factors (male gender, shockable 
rhythm, time to ROSC) associated with its occurrence 
[3].

In-hospital mortality attributable to this post-resus-
citation shock varies between 20 and 55% [2, 3, 5] and 
most often results from multiple-organ failure, including 
(1) myocardial dysfunction in up to two third of patients 
[10], (2) acute renal failure in 10–80% of patients accord-
ing to the definition used with a pooled incidence of 37% 
[11], requiring renal replacement therapy in one third of 
patients [12] and associated with long-term occurrence 
of chronic kidney disease [13], (3) hypoxic hepatitis in 
almost 15% of patients [14, 15] and (4) metabolic acidosis 
in up to 90% of patients [16]. All these organ failures were 
shown to be associated with poor outcome in this setting.

In this review, we aimed at focusing on the recent 
advances in pathophysiology and treatment of post-
resuscitation shock.

Pathophysiology of post‑resuscitation shock
The pathophysiology of post-resuscitation shock is both 
due to the cause of CA and to the ischemia–reperfusion 
syndrome, which results in a complex and multifactorial 
puzzle of organ dysfunctions. Whatever the aetiology of 
CA, the post-resuscitation shock is mainly a combination 
of myocardial dysfunction, vasoplegia and hypovolemia.

Myocardial dysfunction
In a pivotal study combining angiographic data and pul-
monary artery catheter monitoring, Laurent and col-
leagues prospectively described the hemodynamic profile 
of consecutive patients after CA from cardiac origin 
before ICU admission at the time of initial left ventric-
ular angiography and within the first 72  h of ICU stay 
[17]. When left ventricular angiography was performed, 
the ejection fraction was reduced in all patients, whereas 
filling pressure was increased in patients with hemody-
namic instability but low to normal in patients without 
hemodynamic instability. Few hours after ICU admission, 
the cardiac index was found to be decreased with low or 
normal filling pressure in all patients, suggesting hypov-
olemia. Thereafter, the cardiac index gradually improved 
with a return to normal values within 24  h, whereas 

filling pressure remained unchanged over time. Despite 
improvement of cardiac index, all patients required large 
amount of fluid administration and high doses of vaso-
pressors within the first 72  h to maintain acceptable 
mean arterial pressure (MAP) level [17]. On the whole, 
these observations were suggestive of an early and severe 
myocardial dysfunction, usually regressive within 48  h, 
associated with a vasoplegia.

Using echocardiography, it has been shown that this 
post-resuscitation myocardial dysfunction is very com-
mon, concerning up to 70% of the patients [10, 18]. The 
most common pattern is an early and transient systolic 
and diastolic left ventricular dysfunction [17], which can 
be considered as a model of myocardial stunning follow-
ing the ischemia–reperfusion syndrome [19]. Of course, 
this myocardial dysfunction is very common when CA 
results from a coronary occlusion. However, this myo-
cardial dysfunction may be worsened by repeated defi-
brillations (especially when using a monophasic and 
high-energy current), and may also be partly consid-
ered as an “adrenergic cardiopathy”, as illustrated by the 
independent association between the epinephrine dose 
administered during cardiopulmonary resuscitation and 
the severity of the cardiac dysfunction [20].

Vasoplegia
Regarding the vasoplegia that is commonly observed as 
a consequence of the ischemia–reperfusion syndrome, 
two mechanisms are mainly suspected on the basis on 
prospective human studies. First, neutrophils accumula-
tion, neutrophil-endothelial interaction and neutrophils 
activation in microvessels following global ischemia and 
reperfusion lead to endothelial cell dysfunction [21]. 
The latter increases the transduction of inducible NO-
synthase, which in turn induces a relaxation of vascular 
smooth muscle cells and promotes the activation of the 
coagulation cascade [22]. Second, the reactive oxygen 
species generated by the ischemia–reperfusion syn-
drome activate the innate immune cells. It leads to an 
increase in inflammatory cytokines release and inducible 
NO-synthase expression, both worsening the endothe-
lial dysfunction and thus vasoplegia [23, 24]. Since these 
two mechanisms are very similar to those involved in the 
pathophysiology of sepsis, the post-resuscitation shock 
is frequently considered as “a sepsis-like syndrome”. In 
addition, an authentic sepsis may also contribute to this 
hemodynamic profile as infectious complications are 
very common at this stage [25].

Hypovolemia
Hypovolemia after CA is common but often under-
treated, because of the fear of fluid overload in these 
patients with potential myocardial dysfunction. It results 
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from vasoplegia (relative hypovolemia due to the mis-
match between contents and container), from the cap-
illary-leak syndrome in the most severe patients with 
prolonged resuscitation before ROSC and/or under 
extracorporeal life support (ECLS) [26] and in a later 
phase, from the third compartment syndrome related to 
ileus and intestinal injury.

Splanchnic dysfunction and endotoxemia
Some human and prospective studies have suggested 
that gut injury could also contribute to the vasoplegia 
observed in the post-resuscitation shock through its 
ability to provoke or worsen a systemic inflammatory 
response [27–29]. Indeed, in post-CA patients, mark-
ers of intestinal injury are increased and endotoxemia 
is frequent [27, 28], this latter being associated with the 
severity of vasoplegia [29]. However, its incidence is 
still unknown and the relationship between post-resus-
citation shock and gut injury is complex, as the two are 
closely intertwined.

Hormonal dysfunction
A relative adrenal insufficiency could also participate to 
the vasoplegia observed during the post-resuscitation 
shock. Pène and colleagues prospectively performed 
corticotropin-stimulation test in consecutive post-CA 
patients admitted in ICU and they observed that 52% 
of these patients had a relative adrenal insufficiency 
that was associated with shock-related mortality [30]. 
These findings were confirmed by other teams [31, 32], 

highlighting the concept of both relative adrenal insuf-
ficiency and adrenal reserve exhaustion (as observed in 
patients with septic shock). In addition, the hypothalamic 
release of arginine-vasopressin seems to be impaired in 
patients after CA [33], also contributing to vasoplegia.

Importantly, there is an interindividual variability in the 
respective weight of the different mechanisms described 
above in the pathophysiology of post-resuscitation shock. 
Nevertheless, all are closely interplayed and result in a 
vicious circle that self-perpetuates it (Fig. 1).

Management of post‑resuscitation shock
Symptomatic treatments
Early‑goal directed therapy
Similarities between septic and post-resuscitation shock 
led some authors to advocate for post-resuscitation shock 
an early-goal directed therapy strategy including hemo-
dynamic resuscitation and therapeutic hypothermia [34, 
35]. The hemodynamic resuscitation that is proposed is 
based on an aggressive step-by-step strategy including 
fluids, vasopressors, inotropes and blood transfusion, in 
order to target predefined MAP level and to normalize 
the central venous oxygen saturation, used as a surrogate 
of oxygen delivery within the first hours of therapy. Pre-
liminary results from an exploratory study including 20 
patients without systematic assessment of cardiac func-
tion suggested that this early-goal directed therapy did 
not improve mortality after comparison with matched 
historic controls [34]. A recent multicentre and rand-
omized study confirmed that such an early-goal directed 
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therapy strategy was neither shown to improve mortal-
ity nor to limit the extent of anoxic brain damage or neu-
rological outcome despite an improvement in cerebral 
oxygenation [35]. Nevertheless, it might be reasonable to 
use such a strategy in post-resuscitation shock in order to 
maintain an adequate organ perfusion (Fig. 2).

Vasopressors and inotropic drugs
Besides fluid administration, the hemodynamic man-
agement of post-resuscitation shock is mostly based on 
vasopressors because of the severe vasoplegia and vaso-
dilation, in combination with inotropes when post-resus-
citation myocardial dysfunction is present (Fig. 2).

Norepinephrine should be considered as the first-line 
vasopressor, in order to avoid arrhythmogenic effects of 
other catecholamines. Regarding inotropes, dobutamine 
is the most established treatment in this situation [36, 
37]. These two animal studies showed that dobutamine 
successfully overcome the global systolic and diastolic left 
ventricular dysfunction resulting from prolonged CA [36, 
37]. In addition, the most effective dose would be 5 µg/
kg/min: a lower dose would be inefficient and a higher 
dose would increase in a too large extent the myocardial 
oxygen consumption [37]. Importantly, this threshold 
value of 5 µg/kg/min could not necessarily be transposed 
in humans and the potential detrimental effects of higher 
dose of dobutamine deserve further studies.

Levosimandan could also be an interesting alternative 
to dobutamine in this setting, as suggested by an animal 

study [38], as well as phosphodiesterase inhibitor such as 
milrinone [20]. Nevertheless, nothing was done in this 
field since nearly one decade and both treatments still 
require further clinical validation and are not recom-
mended for the management of post-resuscitation shock 
so far.

Target for mean arterial pressure level
Because arterial hypotension is associated with poor 
neurological outcomes in patients after CA [39] and 
because the autoregulation of cerebral blood flow may 
be impaired after ROSC [40], the MAP level is an impor-
tant therapeutic goal in patients with post-resuscitation 
shock. In this regard, several observational studies have 
suggested that maintenance of higher MAP levels was 
associated with a better brain tissue oxygenation [41], 
an improvement in survival [42, 43] and a better neuro-
logical outcome [44]. In a recent multicenter and rand-
omized study (COMACARE study), it has been shown 
in 120 comatose patients after OHCA that, targeting 
a low-normal (65–75  mmHg) or a high-normal (80–
100 mmHg) MAP level for the first 36 h after ICU admis-
sion neither affect the neuron-specific enolase (NSE) 
serum level nor mortality or neurological outcomes 
[45]. However, targeting a high-normal MAP level was 
recently shown to decrease troponin release as a marker 
of myocardial injury [46]. Thus, although it is currently 
recommended that hemodynamic treatments should be 
guided by arterial pressure, the optimal MAP level still 
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remains unknown and may probably vary according to 
patients [47].

Ventilatory management
A vast majority of post-CA patients are mechanically 
ventilated, according to current guidelines [47]. Regard-
ing protective lung ventilation strategies, it has been 
shown in a retrospective study that lower tidal volumes 
(≤ 6 mL/kg) were independently associated with favora-
ble neurocognitive outcome, more ventilator-free days 
and more shock-free days [48]. Regarding the positive 
end-expiratory pressure (PEEP) level, a secondary analy-
sis of three international prospective, observational and 
multicenter studies including 812 patients mechanically 
ventilated after CA, showed that the PEEP level increased 
from 3.5 ± 3 to 6.5 ± 3  cmH2O between 1998 and 2010 
and that lower PEEP levels were independently associ-
ated with the occurrence of ICU-acquired pneumonia 
[49]. Thus, although no study has specifically investi-
gated this issue, a PEEP level between 4 and 8 cmH20 
[47], or higher in patients with acute respiratory distress 
syndrome [50], seems to be rationale. To summarize, it 
seems to be reasonable to consider protective lung ven-
tilation in such patients who are exposed to a marked 
inflammatory response.

Hypoxemia and hypercapnia should be strictly con-
trolled, since both may contribute to secondary brain 
injury, even in patients receiving ECLS [51]. However, 
the role of oxygenation remains still debated: the results 
of an exploratory post-hoc substudy of the Target Tem-
perature Management (TTM) trial suggested that 
hyperoxemia and hypoxemia were not associated with 
poor neurological outcome and increase in biomarker 
of brain injury [52], whereas some retrospective and/or 
meta-analysis of experimental and clinical studies found 
that hyperoxia could be linked to poor neurological out-
come [53] through oxidative stress and potential direct 
pulmonary and cardiovascular toxicity of oxygen [54]. 
Finally, preliminary experimental [55, 56] and human [57, 
58] studies might suggest a potential interest of hyper-
baric oxygenation as a curative treatment of reperfusion 
injury, with a decrease in neuronal death [55, 56] and an 
improvement of neurological outcomes [55–57] or cog-
nitive functions [58] after CA not related to carbon mon-
oxide poisoning or gas embolism.

In the multicenter and randomized COMACARE 
study, targeting a low-normal or a normal-high range in 
partial pressure of arterial carbon dioxide (PaCO2) and 
oxygen (PaO2) during the first 36  h after ICU admis-
sion did not affect NSE serum level [59]. However, high-
normal PaCO2 (5.8–6.0  kPa) and moderate hyperoxia 
(PaO2: 20–25  kPa) resulted in better cerebral oxygena-
tion [59]. Another large multicenter and randomized 

trial comparing normocapnia and mild hypercapnia in 
patients after OHCA is still ongoing (NCT03114033).

At that time, current guidelines recommend to target 
normoxia and normocapnia during the first 72 h [47].

Targeted temperature management
Targeted temperature management (TTM) is currently 
recommended in patients after OHCA with initial shock-
able rhythm who remain comatose after ROSC and is 
suggested in patients after OHCA with non-shockable 
rhythm or after in-hospital CA with any initial rhythm 
who remain comatose after ROSC, for at least 24 h [47, 
60, 61]. TTM should be started immediately at ICU 
admission [62]. However, the optimal target temperature 
[63, 64], the optimal duration [65] of TTM as well as the 
cooling procedures [66–68] are still matter of debate.

Beyond neuroprotective effects [69], TTM might also 
have cardioprotective effects, especially in patients expe-
riencing post-resuscitation myocardial dysfunction [20]. 
Currently, there is no sufficient data to contraindicate 
TTM in patients with post-resuscitation shock. However, 
when TTM is used, there are some arguments that sug-
gest avoiding lowest temperature targets. In a sub-study 
of the TTM trial, TTM at 33 °C was associated with more 
frequent hemodynamic alterations (decreased heart rate, 
elevated levels of lactate, and need for increased vaso-
pressor support) compared with TTM at 36 °C [70].

Specific treatments
Coronary reperfusion
There is a large consensus for considering acute coronary 
disease as a frequent cause of CA in adult patients [71, 
72]. By analogy with the management of other acute cor-
onary syndromes, the most common strategy is to per-
form a coronary angiogram (CAG) as soon as possible, 
since many observational studies reported a significant 
association between early percutaneous coronary inter-
vention and improved outcome after OHCA [73–75]. 
Current guidelines argue for a large use of early CAG 
in these patients [47, 76]. Once the interest of percuta-
neous coronary intervention in CA of ischemic cause is 
universally acknowledged, there are several unsolved 
issues. Among these issues, selection of the best candi-
dates and optimal timing for CAG are the most debated. 
Regarding the indication, the decision for early CAG 
should be based on a panel of arguments encompass-
ing previous medical history, warning symptoms before 
arrest, initial cardiac rhythm, electrocardiographic pat-
tern after ROSC, and biomarkers if available. In addition, 
recent retrospective data highlight the interest of focus-
ing coronary interventions for patients with preserved 
neurological status [77]. Regarding the timing, there is 
a consensus for early CAG (i.e., as soon as possible after 
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hospital arrival) in ST-elevation myocardial infarction 
(STEMI) patients with preserved neurological prognosis, 
since this “scoop and run” strategy offers the benefit of 
both immediate diagnosis and treatment and may avoid 
secondary cardio-circulatory deterioration related to 
untreated coronary occlusion [47]. By contrast, a “wait 
and see” strategy (delayed CAG) may be proposed in 
patients without evidence of STEMI [78]. Thus, Lemkes 
and colleagues showed in a multicenter and randomized 
controlled trial that the survival of patients who had CA 
without signs of STEMI was similar regardless the timing 
of CAG. In addition, a delayed strategy avoided a signifi-
cant number of useless CAG [78]. These two strategies 
(early versus delayed CAG in non-STEMI patients) are 
currently evaluated in several ongoing studies (DISCO 
NCT02309151, COUPE NCT02641626, TOMAHAWK 
NCT02750462, PEARL NCT02387398, NCT02587494, 
EMERGE NCT02876458), which should be helpful for 
establishing future guidelines.

Extracorporeal life support
Mechanical circulatory support can be necessary in the 
most severe forms of post-resuscitation shock, when the 
neurological prognosis is assumed to be favourable. Sev-
eral technics have been proposed, such as Impella [79], or 
intra-aortic balloon pump [80]. However, the post-resus-
citation myocardial dysfunction can be very severe and 
global [10, 20] with unpredictable severity, up to refrac-
tory cardiogenic shock. For these reasons, veno-arterial 
extra-corporeal membrane oxygenation is the most com-
monly employed ECLS technic in the post-resuscitation 
shock [81].

The main issue is to identify the most suitable patients 
with post-resuscitation shock eligible for ECLS. Bascom 
and colleagues have proposed to use the “CREST score” 
(Table 1) for early identification of patients carrying the 
highest risk of circulatory-related death after CA, who 
could, therefore, be elective candidates for ECLS [82]. It 
has also been shown that in patients with post-resuscita-
tion shock treated by ECLS, admission SOFA score < 14, 
initial shockable rhythm and international normalized 
ratio < 2.4 as well as initial arterial pH (odds ratio = 1.7 
per 0.1 increase) and implantation of ECLS later than 
24 h after ROSC were associated with survival and thus 
could be useful triage tools in such patients [83, 84]. 
Interestingly, 25–28% of these ECLS patients survived to 
hospital discharge with favourable neurological and long-
term outcome [83, 84], supporting the use of ECLS in 
carefully selected patients with post-resuscitation shock 
[85].

Beyond hemodynamic severity, the neurological prog-
nosis should be also considered before the decision of 
ECLS in patients with post-resuscitation shock. Several 

scores have been proposed to assess neurological prog-
nosis after OHCA [77, 86–88] (Table  1) and could be 
useful to guide the therapeutic strategy in patients expe-
riencing CA [77].

To summarize, ECLS should be considered as a bridge-
to-recovery only in the most severe patients with post-
resuscitation shock with preserved neurological status, 
assessed by some selected prognostic factors or specific 
scores (Table 1).

Epurative treatments
Regards to the important release of inflammatory media-
tors and cytokines in patients with post-resuscitation 
shock, animal studies have suggested that an early blood 
removal of inflammatory mediators could be associated 
with an improvement in hemodynamics and outcome 
[89, 90]. However, inflammatory mediators are relatively 
large molecules and it is thus unlikely that the mem-
branes used for conventional renal replacement therapies 
allow one to achieve high level of cytokines removal, con-
versely to other alternative extracorporeal blood purifi-
cation therapies. In this regard, Laurent and colleagues 
prospectively assessed the effects of high-volume hemo-
filtration, a technique known to allow a better removal of 
cytokines, in consecutive patients with post-resuscitation 
shock [91]. Compared to conventional renal replace-
ment therapy, the use of high-volume hemofiltration was 
associated with a better survival, while there was no sig-
nificant effect on the cytokines levels [91]. Such a lack of 
effect on cytokines removal on hemodynamics was con-
firmed in more recent animal [92] or human studies [93] 
pleading against cytokine removal in ischemia–reperfu-
sion syndrome, whatever the epurative technique used.

This lack of effect may be explained by several mecha-
nisms: (1) the lower cytokines level at ICU admission 
(compared to patients with septic shock) [22], (2) the 
quick decrease in cytokines level after the initial and 
transient increase at the time of ROSC [91, 92], and/or 
(3) the membrane fouling, resulting in a progressive bet-
ter removal of molecules with lower molecular weights 
despite the use of high cut-offs membranes.

Thus, given the potential prolonged effects on hemo-
dynamics of the inflammatory mediators and cytokines 
despite their very short half-life, future therapies should 
rather focus on agents able to block the inflammatory 
cascade following the release of inflammatory mediators 
and cytokines, than to epurative treatments.

Steroids
The use of steroids in patients with post-resuscitation 
shock is still debated despite the evidence for the hor-
monal dysfunction. Although beneficial effects of glu-
cocorticoids administration during cardiopulmonary 
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resuscitation have been suggested by retrospective or 
pilot studies [94, 95], only a few studies have focused on 
the impact of corticosteroids administration in success-
fully resuscitated patients. In a randomized controlled 
trial by Mentzelopoulos and colleagues [96] comparing 
a strategy combining vasopressin, methylprednisolone 
and epinephrine versus epinephrine alone, patients who 
were successfully resuscitated received either a stress-
dose of hydrocortisone (300 mg daily for 7 days) or saline. 
Interestingly, the administration of hydrocortisone (at 
least one dose) improved survival to hospital discharge 
with favorable neurological status, suggesting a poten-
tial benefit of steroids. Nevertheless, because multiple 

interventions were concomitantly used, it is difficult to 
affirm the effect of hydrocortisone itself on outcome. 
More recently, Donnino et  al. evaluated the interest of 
hydrocortisone administration (300 mg daily for 7 days) 
in a randomized, double-blind, placebo-controlled trial 
including 50 patients with refractory post-resuscitation 
shock [97]. Compared to placebo administration, no 
beneficial effect of hydrocortisone on mortality, time to 
shock reversal or shock reversal, or neurological outcome 
was observed. However, patients with documented adre-
nal insufficiency who received hydrocortisone tended to 
achieve shock reversal more frequently than those receiv-
ing placebo [97].

Table 1  Summarize of  the  different scores that  can be used to  select eligible patients with  post-resuscitation shock 
to extracorporeal life support

For the CREST score, ischemic time was defined as estimated time from cardiac arrest to return of spontaneous circulation

LVEF left ventricular ejection fraction, BLS basic life support, Ln natural logarithm, ROSC return of spontaneous circulation

Scores Points

Assessment of risk of circulatory-related death
CREST score

History of coronary artery disease 1

Non-shockable rhythm 1

LVEF at time of admission < 30% 1

Shock at presentation 1

Ischemic time > 25 min 1

Assessment of neurological prognosis
CAHP score

Age 1.1 × (age − 10)

Setting 0 if public setting and 24 if home

Initial Rhythm 0 if shockable and 27 if non-shockable

Collapse-BLS duration (min) 2.8 × duration

BLS-ROSC duration (min) 0.8 × duration

pH 585–77 × pH

Epinephrine dose during ressuscitation (total) 0 if 0 mg and 27 if 1 or 2 mg

OHCA score

Ventricular fibrillation or tachycardia − 13 if the initial recorded rhythm is VF or ventricular tachycardia
 + 6 × ln (no-flow interval)
 + 9 × ln (low-flow interval)
− 1434/serum creatinine
 + 10 × ln (arterial lactate)

No-flow interval (min)

Low-flow interval (min)

Serum creatinine (µmol/L)

Lactate (mmol/L)

CAST score

0 1 2 3

Initial rhythm Shockable Non-shockable – –

Witness/ROSC time (min)  < 20 min  ≥ 20 min No witness –

pH  ≥ 7.31 7.16–7.30 7.01–7.15  ≤ 7.00

Lactate (mmol/L)  ≤ 5.0 5.1–10.0 10.1–14.0  ≥ 14.1

Motor component of Glasgow coma scale  ≥ 2 1 – –

Gray matter attenuation to white matter attenuation ratio  ≥ 1.201 1.151–1.200  ≤ 1.150 –

Albumin (g/dL)  ≥ 3.6 3.1–3.5  ≤ 3.0 –

Hemoglobin (g/dL)  ≥ 13.1 11.1–13.0  ≤ 11.0
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In a recent work, Tsai et al. have shown in a retrospec-
tive analysis of the Taiwan National Health Insurance 
Research Database that the administration of steroids 
during the post-CA period was associated with bet-
ter survival to hospital discharge and 1-year survival in 
patients receiving low-dose of steroids (< 50  mg daily 
equivalent prednisone, i.e., about 200  mg/day of hydro-
cortisone) only [98]. Conversely, higher doses of ster-
oids could even be associated with worse outcomes 
than in patients not receiving steroids [98]. Despite the 
retrospective design of the study and the fact that these 
results come from health insurance databases (with many 
potential confounders), the administration of low-dose of 
hydrocortisone in patients with post-resuscitation shock 
might be of interest, especially in patients with associated 
relative adrenal insufficiency. Further randomized trials 
are needed to clarify the potential interest of steroids in 
patients with post- resuscitation shock.

New perspectives
Although the impairment of the hypothalamic release of 
arginine-vasopressin contributes to the vasoplegia of the 
post-resuscitation shock [33], only few data are available 
regarding the potential interest of vasopressin adminis-
tration in patients with post-resuscitation shock [96, 99] 
and only one study investigated the potential isolated 
effect of vasopressin administration in such patients [99]. 
Thus, Mayr and colleagues retrospectively reported the 
hemodynamic effects of arginine-vasopressin admin-
istration in 23 patients with post-resuscitation shock 
unresponsive to hemodynamic therapy including fluids, 
norepinephrine, epinephrine and milrinone. Arginine-
vasopressin administration significantly increased MAP 
and decreased the catecholamines requirement and 
blood lactate level [99]. Despite the retrospective design 
of the study and the small number of patients, these 
results should encourage to further evaluate the effects 
of arginine-vasopressin, possibly in combination with 
low-dose of hydrocortisone, in an attempt to achieve the 
“hormonal healing” in patients with post- resuscitation 
shock.

Finally, to further investigate the gut dysfunction in 
post-CA patients, an ongoing study (ENTRACT study, 
NCT02349074) aims at determining the incidence of 
upper gastro-intestinal tract ischemia by performing sys-
tematic gastroscopy in all patients experiencing CA.

Conclusion
The post-resuscitation shock results from the whole-
body ischemia–reperfusion process provoked by the 
sequence of circulatory arrest, resuscitation manoeuvers 
and return of spontaneous circulation. It is an early and 
transient complication of the post-resuscitation phase, 

which frequently results in multiple-organ failure and 
high mortality. Its pathophysiology is complex and mul-
tifactorial, combining a myocardial dysfunction and 
characteristics common to sepsis, such as vasoplegia, 
hypovolemia and endothelial dysfunction. Treatment is 
based on an early and aggressive hemodynamic manage-
ment, including ECLS in the most severe patients, asso-
ciated with coronary reperfusion when needed. Further 
clinical research is needed in order to explore new thera-
peutic opportunities regarding inflammatory, hormonal 
and vascular dysfunction.
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