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Abstract 

Background:  Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 
disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, 
make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after return-
ing to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated 
to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-
19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and 
respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-
responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 
3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, 
complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if 
PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation.

Results:  The median PaO2/FiO2 variation after the first PP cycle was 49 [19–100%] and no differences were found 
in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and 
non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of trache-
ostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, 
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Background
To date, SARS-CoV-2 has infected more that 132 million 
people of whom more than 2.8 million died worldwide 
[1]. When the case fatality ratio is not homogeneous 
across countries, probably depending on the number of 
tests done, the mortality in patients admitted to the 
Intensive Care Unit (ICU) is higher than 40% [2] and can 
reach 73% for patients requiring both mechanical ventila-
tion and dialysis [3]. The pneumonia caused by SARS-
CoV-2 (COVID-19), indeed, can lead to severe Acute 
Respiratory Distress Syndrome (ARDS) requiring inva-
sive mechanical ventilation. COVID-19-related ARDS is 
associated to a severe impairment of lung ventilation/
perfusion 

(

V̇A
/

Q̇

)

 matching, resulting from a defect of 
hypoxic pulmonary vasoconstriction and presence of 
thrombi in the pulmonary microcirculation, leading to 
high intra-pulmonary shunt and dead space, respectively 
[4, 5]. Early prone positioning (PP) has been used in criti-
cally ill patients affected by the COVID-19, both in 
patients receiving invasive mechanical ventilation [6] and 
in those spontaneously breathing [7]. In non-COVID-19 
severe ARDS, PP has an established role [8], as it can 
improve oxygenation and survival as compared to supine 
position [9]. The mechanisms by which PP improves oxy-
genation include the recruitment of atelectatic dorsal 
lung areas and the redistribution of lung ventilation 
toward still well perfused areas [10, 11]. Moreover, PP 
may reduce the lung stress and strain associated with 
mechanical ventilation, thus decreasing the risk of venti-
lator-induced lung injury [12].

Though the improvement of oxygenation resulting from 
PP may be dramatic in some patients, it is not observed 
in every one of them. The COVID-19-related hypoxemia 
is, indeed, caused by a combination of several factors, 
which affect V̇A

/

Q̇ in different ways, making COVID-
19 ARDS patients potentially responding differently to 
PP in terms of oxygenation. Moreover, the relationship 
between oxygenation response to PP and survival is still 
an open question, since it has been found either margin-
ally [13] or not associated [14] with survival in patients 
with non-COVID-19 ARDS. Several evidences exists that 
in many proned COVID-19 patients, the oxygenation 
improvement determined by PP is not sustained after re-
supination [7, 15, 16]. To date, no evidence exists that a 
sustained improvement of oxygenation after resupination 

is associated to patient’s outcome. Therefore, we aimed 
at further explore whether, in mechanically ventilated 
COVID-19 patients undergoing PP, an oxygenation 
improvement to PP sustained after resupination would 
be associated to patient outcome. To investigate this, we 
performed a secondary analysis on consecutive mechani-
cally ventilated ARDS COVID-19 patients admitted to 
16 Italian ICUs and undergoing PP for clinical decision. 
We analyzed if the oxygenation variation after the first PP 
session, as compared to the pre-PP state, could be associ-
ated to ICU ventilatory-free days (VFD), ICU mortality 
and likelihood of liberation from mechanical ventilation 
assessed at 28 days after ICU admission.

Methods
This is a secondary analysis on patients enrolled in a pre-
vious prospective study [17] conducted in 15 ICUs from 
Italian hospitals between February 22 and May 4, 2020. 
The data from another ICU obtained after the publica-
tion of the first paper were included in present report.

The study was approved by the Institutional Review 
Board of the study coordinator center (Maggiore Hos-
pital, Bologna, Italy, approval number: 273/2020/OSS/
AUSLBO) and by each institutional review committee of 
the participating hospitals. Informed consent was par-
tially waived according to the approval of the local Ethics 
committee and analysis was conducted on anonymized 
individual data. The study was registered in ClinicalTri-
als.gov (NCT04411459).

Inclusion and exclusion criteria
To be included in the present study patients should be 
tested positive for SARS-CoV-2 infection (confirmed 
by real-time reverse transcription-polymerase chain 
reaction assays), older than 18  years, receive invasive 
mechanical ventilation, undergo at least one PP session 
for which PaO2/FiO2 and driving pressure (DP) data were 
available (Additional file 1: Figure S1) and fulfill the crite-
ria for ARDS, according to the Berlin definition [8]. The 
single non-inclusion criterion was the use of non-inva-
sive ventilation (NIV) during the entire clinical course.

Data collection and mechanical measurements
Baseline data and patient’s history were collected using 
an electronic case report form developed by YGHEA, 

oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 
28 days and was increasingly higher being higher the oxygenation response to PP.

Conclusions:  Sustained oxygenation improvement after first PP session is independently associated to improved 
survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

Keywords:  COVID19, Prone positioning, Ventilatory free days, ICU
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CRO division of Ecol Studio SPA (Bologna Operational 
Headquarters, Bologna, Italy) and hosted by Actide 
Nubilaria (Novara, Italy). Collected data included demo-
graphic data, clinical symptoms or signs at presenta-
tion, underlying comorbidities, laboratory data, chest 
radiologic reports, respiratory parameters before the 
intubation and ventilator settings during the first 5 days 
of mechanical ventilation [e.g., positive end-expiratory 
pressure (PEEP), plateau pressure (Pplat), static compli-
ance (CRS), PaO2/FiO2 ratio], and clinical outcomes. The 
PaO2/FiO2 and DP were recorded within 3  h before PP 
(T1) and from 1 to 3 h after re-supination (T2). DP was 
computed as Pplat minus total PEEP. DP (DPdiff) and 
PaO2/FiO2 difference (Pfdiff) were calculated as the dif-
ference in DP and in PaO2/FiO2, respectively, between T1 
and T2 (T2 minus T1). Both measurements were taken; 
therefore, in supine position, the duration of the PP ses-
sion was recorded.

Definitions
Mechanical ventilation was considered invasive if deliv-
ered through an endotracheal tube or a tracheostomy 
cannula. The duration of invasive mechanical ventilation 
was defined as the time elapsed from intubation to suc-
cessful extubation or successful permanent disconnec-
tion from mechanical ventilation for tracheostomized 
patients. This latter was considered effective if sustained 
24 h per day. Extubation failure was defined as the need 
for reintubation within 48  h from extubation. VFDs at 
28  days were defined as 28 minus the number of days 
elapsed from the last successful extubation in intubated 
patients, whether or not NIV was used after extubation. 
VFDs were defined as zero in patients who died dur-
ing the 28  days regardless of their extubation status. In 
tracheostomized patients, intermittent disconnections 
were not counted and VFDs were defined as 28 minus 
the number of days from the last successful sustained 
disconnection from mechanical ventilation. A cut-off of 
40  ml/cmH2O was chosen for discriminating between 
higher and lower CRS as previously suggested [8]. To 
define responders and non-responders to PP, we evalu-
ated the distribution of PaO2/FiO2 response, calculate 
as percentage of PaO2/FiO2 change in T2 as compared 
to T1. Responders were defined as the patients in which 
the P/F increase in T2 was ≥ of the median population 
response, while non-responders were those with a per-
centage P/F change in T2 < median response of the gen-
eral population.

Statistical analysis
Continuous variables were expressed as median and 
first-to-third interquartile range (IQR), unless other-
wise stated, while categorical variables were expressed 

as counts and percentage, and compared using Mann–
Whitney U test and Chi-square test, respectively. The dif-
ferences of PaO2/FiO2 ratio and driving pressure before 
and after pronation between the responders and non-
responders [18] groups were analyzed with a general lin-
ear model for repeated measures. Correlation between 
variables was tested using the Pearson R test. Ventilator-
free days were expressed as mean ± SD, as suggested by 
Yehya et  al. [19]. The liberation from mechanical venti-
lation at 28  days after intubation (D0) was analyzed by 
performing a competing risks regression model on data, 
according to the method of Fine and Gray [20], with 
the event death being the competing risk. The response 
to prone positioning was analyzed as ordinal variable, 
grouping patients into 4 classes of response based on the 
quartiles of PaO2/FiO2 response to first PP distribution. 
Model building was performed by means of a variable 
selection based on an initial screening using univariate 
analysis with a P value < 0.2 criterion, then a stepwise 
selection with entry criterion at P value = 0.05 and stay 
criterion at P value = 0.1. Estimates of coefficients in the 
model are reported as sub-hazard ratios (95% confidence 
intervals (CI). All P values refers to two-tailed tests of 
significance and P < 0.05 was deemed as the statistically 
significant threshold. Data were analyzed using SPSS 
Statistics 26 (IBM SPSS Statistics for Windows, Version 
26.0. Armonk, NY: IBM Corp.) and Stata/IC 16 (College 
Station, Texas, USA). Post-hoc power was calculated on 
the primary outcome of the study (VFDs) using G*Power 
3.1.9.4.

Results
Sample selection
Of the 470 patients in the original database, 313 (66.6%) 
underwent PP during ICU stay and were screened for 
eligibility. Complete data on respiratory variables before 
and after prone positioning were available for 191/313 
(61%) patients, who were subsequently considered in the 
current analysis.

Main characteristics of the sample
The main characteristics of the population are summa-
rized in Table 1. Age was 66 years [59–72], 152 patients 
(79.6%) were males, SAPS II and SOFA scores at admis-
sion were 38 [30–45] and 5 [3–7], respectively. Hyper-
tension was the most common comorbidity (104/191, 
54.5%). NIV, continuous positive airway pressure (CPAP) 
or high flow nasal oxygen (HFNO) were used in most of 
the patients before intubation and most of them under-
went NIV or CPAP for more than 24  h at the time of 
intubation. PaO2/FiO2 observed before intubation was 94 
[76–112] mmHg.
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Responders and non‑responders comparability
The median PaO2/FiO2 improvement after prone 
positioning was 49% [19–100%]. Responders and 
non-responders to PP did not show any significant dif-
ference in demographic characteristics, chronic disease 
or ventilatory treatment before the first session of PP 
and the proportion of male sex was the same in each 
group (Table 1). No significant difference was found in 
the duration of PP (Table 2).

Globally, the lowest PaO2/FiO2 ratio observed dur-
ing the first 5 days of ICU stay was 90 [69–113] and the 
two groups did not differ either for the lowest PaO2/
FiO2 ratio or for the ARDS stage according to the Berlin 
definition [8]. Non-responders had significantly higher 
Pplat and lower CRS during the first 5 days of ICU stay.

Before PP, neither the PaO2/FiO2 ratio (respond-
ers: 101 [80–127]  cmH2O, non-responders: (105 
[90–130]  cmH2O, P = 0.10) and DP (responders: 13 
[10–16]  cmH2O, non-responders: (14 [11–16]  cmH2O, 
P = 0.16) were significantly different among groups. 
After the PP session, PaO2/FiO2 was 210 [161–276] 
in responders and 127 [100–150] mmHg (P < 0.001) 
in non-responders and the DP was slightly but sig-
nificantly lower in responders as compared to non-
responders (12 [10–14] vs 13 [11–15] cmH2O, 
P = 0.003). PFdiff was different between the two 
groups, as expected by study design, but DPdiff was not 
(Fig.  1a, b). Moreover, there was no significant corre-
lation between PFdiff and DPdiff (r = − 0.06; P = 0.38, 
Additional file 2: Figure S2).

Table 1  Demographic data and clinical characteristics

Data expressed as median [IQR] or counts (% in group). Comparisons were performed using Mann–Whitney U test or Chi-square test. Significant P values are 
highlighted in bold

BMI  body mass index, SAPS  simplified acute physiology score, SOFA  sequential organ failure assessment score, COPD  chronic obstructive pulmonary disease, 
CPAP  continuous positive airway pressure, MELD  model for end-stage liver disease, NIV  non-invasive ventilation, PaO2  arterial oxygen partial pressure, FiO2  inspired 
fraction of oxygen, IBW  Ideal Body Weight, PEEP  positive end expiratory pressure, Pplat  plateau pressure, CRS  respiratory system compliance, HFNO  high flow nasal 
oxygen, PP  prone position, DP  driving pressure
a During the first 5 days of ICU stay

Total population (n = 191) Responders (n = 96) Non responders (n = 95) P

Age—yr 66 [59–72] 65 [59–72] 68 [59–72] 0.25

Sex—male—no (%) 152 (79.6) 75 (78) 77 (81) 0.72

BMI 28 [26–31] 28 [25–31] 28 [26–31] 0.35

SAPS II score 38 [30–45] 38[30–46] 38[30–44] 0.81

SOFA score 5 [3–7] 4 [3–6] 5 [3–7] 0.31

Hypertension—no (%) 104 (54.5) 50 (52) 54 (57) 0.56

Chronic ischemic heart disease—no (%) 20 (10.5) 8 (8) 12 (13) 0.36

Chronic kidney disease—no (%) 12 (6.3) 5 (5.2) 7 (7.4) 0.57

Diabetes—no (%) 46 (24.1) 22 (22.9) 24 (25.3) 0.74

Chronic liver disease (MELD > 10)—n (%) 3 (1.6) 1 (1) 2 (2.1) 0.62

COPD—no (%) 14 (7.3) 8 (8.3) 6 (6.3) 0.39

HFNO before intubation—no (%)—183 20 (10.9) 13 (13.5) 7 (7.4) 0.24

CPAP/NIV before intubation—no (%) 127 (70.4) 60 (62.5) 67 (70.5) 0.20

PaO2/FiO2 before intubation—mmHg 94 [76–112] 90 [70–113] 96 [80–110] 0.50

Tidal volume set—ml/kg IBW 7.2 [6.6–7.8] 7.3[6.5–8.1] 7.1[6.6–7.6] 0.48

PEEP set—cmH2O 12 [10–14] 12 [10–15] 12 [10–14] 0.80

Highest Pplata—cmH2O 25 [23–28] 25 [22–28] 26 [24–29] 0.04
Lowest CRS supinea—ml/cmH2O 35 [29–41] 37 [30–43] 33 [27–40] 0.005
Lowest PaO2/FiO2

a—mmHg 90 [69—113] 89 [67—114] 90 [70—110] 0.87

 Class 3—P/F200—300 (%) 0 (0) 0 (0) 0 (0)

 Class 2—P/F 100—200 (%) 72 (38.8) 40 (41.7) 32 (33.7)

 Class 1—P/F < 100 (%) 119 (62.3) 56 (58.3) 63 (66.3)

Duration of CPAP/NIV trial before intubation (n = 127) (n = 60) (n = 67) 0.23

  < 12 h—no (%) 26 (20.5) 8 (13.3) 18 (26.9)

 12—24 h—no (%) 31 (24.4) 16 (26.7) 15 (22.4)

 24—48 h—no (%) 22 (17.3) 13 (21.7) 9 (13.4)

  > 48 h—no (%) 48 (37.8) 23 (38.3) 25 (37.3)
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Clinical outcomes in responders and non‑responders
Clinical outcomes and complication rates during ICU 
stay in the global population and in the two groups are 
summarized in Table  2. Median duration of invasive 
mechanical ventilation and ICU length of stay were not 
significantly different between the groups. In respond-
ers, as compared to the non-responders group, the 

number of VFDs was significantly higher (mean ± SD 
6.3 ± 8.1 vs 2.7 ± 5.6  days, P < 0.001) (Fig.  1c), the tra-
cheostomy rate was lower (47.9% vs 70.5% P = 0.008) as 
well as the ICU mortality (33.3% vs 53.7%, P = 0.006). 
No differences in the cardiovascular, digestive, neuro-
logic, infective and renal complications were found.

Table 2  Clinical outcomes within the 28 days after inclusion

Values are median (IQR) except for VFD (Mean ± SD). Significant P values are highlighted in bold

FiO2  inspired fraction of oxygen, CRS  respiratory system compliance measured in supine position, PaO2  arterial oxygen partial pressure, MV  mechanical ventilation, 
NIV  non-invasive ventilation, CPAP  continuous positive airway pressure, HFNO  high flow nasal oxygen, VFD  ventilator free days, VAP  ventilator associated pneumonia, 
DP  driving pressure

Total population 
(n = 191)

Responders (n = 96) Non-responders 
(n = 95)

P

PaO2/FiO2 response to prone positioning (%, 
mmHg)

49 [19–100] 100 [67–155] 19 [3–31]  < 0.001

Duration of prone positioning (hours) 16 [16–17] 16 [16–16.7] 16 [16–17] 0.757

Tracheostomy—no (%) 113 (59.2) 46 (47.9) 67 (70.5) 0.008
Duration of MV, days 18 [11–28] 18 [10–27] 18 [12–29] 0.432

Attempted extubation—no (%) 39 (20.4) 33 (34.3) 6 (6.3)  < 0.001
Weaning failure—reintubation no (%) 22 (18.8) 17 (17.7) 5 (5.3) 0.093

VAP—no (%) 105 (55) 53 (55.2) 52 (54.7) 0.885

Steroid use 133 (70%) 72 (75%) 61 (64%) 0.083

Non pulmonary infections—no (%) 72 (37.7) 37 (38.5) 35 (36.8) 0.882

Cardiovascular complications—no (%) 31 (16.2) 13 (13.5) 18 (18.9) 0.333

Digestive complications—no (%) 8 (4.2) 5 (5.2) 3 (3.2) 0.721

Neurologic complications—no (%) 17 (8.9) 9 (9.4) 8 (8.4) 1.000

Renal Replacement therapy—no (%) 43 (22.5) 22 (22.9) 21 (22.1) 1.000

Veno-venous ECMO—no (%) 3 (1.6) 0 (0.0) 3 (3.2) 0.121

ICU length of stay, days 22 [14–35] 22[15–35] 21[14–35] 0.994

VFD at 28 days, days 4.5 ± 7.1 6.3 ± 8.1 2.7 ± 5.6  < 0.001
ICU mortality—no (%) 83 (43.4) 32 (33.3) 51 (53.7) 0.006

Fig. 1  Physiologic effect of the first prone positioning session and impact on patient outcome. Effect of the first proning session on change in 
PaO2/FiO2 ratio (a PaO2/FiO2 in after prone position minus PaO2/FiO2 before prone position), change in driving pressure (b driving pressure after 
prone position minus driving pressure before prone position) and ventilator-free days (c) in responders (blue) and non-responders (grey) patients 
with acute respiratory distress syndrome related to COVID-19
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The competing risk regression analysis (Table  3) 
showed that an increase in PaO2/FiO2 after the first PP 
session was independently associated with a greater 
chance of liberation from mechanical ventilation at 
28 days together with lower age, higher PaO2/FiO2 ratio 
during the first 5 days and the absence of renal, pulmo-
nary, neurologic and cardiovascular complications. Spe-
cifically, in our population, for each quartile increase 
in terms of PaO2/FiO2 response the subhazard ratio for 
being free from invasive mechanical ventilation at 28 day 
increase of 1.563 (95% CI 1.329—1.838, P < 0.001, Fig. 2). 

Discussion
In this secondary analysis of critically ill COVID-
19 patients we analyzed if the sustained oxygenation 
improvement after the first PP session could be associ-
ated to ICU outcome in terms of time to liberation from 
mechanical ventilation, complication rates and mortality. 
We found that, in severe COVID-19-related ARDS, the 

Table 3  Competing-risk regression analysis for liberation from mechanical ventilation with death as the competing event

Significant P values are highlighted in bold

SHR subdistribution hazard ratio (SHR 1 no association between the covariate and the corresponding cumulative incidence function, SHR > 1 an increase of the 
covariate value is associated with an increased risk of liberation from mechanical ventilation, SHR < 1 implies the opposite), DP driving pressure, VAP ventilator 
associated pneumonia, CRS compliance of the respiratory system, BMI Body mass index, COPD chronic obstructive pulmonary disease, CPAP continuous positive airway 
pressure, ICU intensive care unit
a Per class points increase, class 1 = severe ARDS, class 2 = moderate ARDS. Reference level in branches for each covariate
b Per quartile variation, 1st quartile (< 19%), 2nd quartile (19–49%), 3rd quartile (49–100%), 4th quartile (> 100%)

Variable (reference level) Univariate analysis Multivariate analysis

SHR 95% CI P SHR 95% CI P

Age 0.964 0.943–0.986 0.002 0.971 0.946–0.996 0.025
Sex (male) 0.679 0.305–1.511 0.342 –

BMI 1.011 0.959–1.065 0.689 –

SOFA score at admission 0.865 0.770–0.970 0.013 –

SAPS II score 0.970 0.937–1.004 0.076 –

Hypertension (yes) 0.700 0.507–0.967 0.031 –

Chronic ischemic heart disease (yes) 0.468 0.146–1.494 0.200 –

COPD (oxygen therapy/CPAP) (yes) 0.845 0.208–3.431 0.814 –

Chronic kidney disease (yes) 1.216 0.281–5.266 0.793 –

Diabetes (yes) 0.768 0.451–1.310 0.333 –

Chronic liver disease (MELD > 10) 1.054 0.295–3.765 0.936 –

Need for renal replacement therapy (yes) 0.208 0.093–0.466 0.001 0.244 0.113–0.526  < 0.001
Late onset VAP (yes) 0.290 0.174–0.483  < 0.001 0.280 0.174–0.450  < 0.001
CRS < 40 ml/cmH2O in the first 5 days 1.021 0.990–1.053 0.195 –

Steroid use (yes) 1.860 0.852–4.060 0.119 –

PaO2/FiO2 variation after pronationb 1.370 1.187–1.582  < 0.001 1.563 1.329–1.838  < 0.001
Cardiovascular complications (yes) 0.180 0.0752–0.433  < 0.001 0.194 0.088–0.427  < 0.001
Neurologic complications (yes) 0.376 0.165–0.856 0.020 0.296 0.110–0.798 0.016
Digestive complications (yes) 0.267 0.046–1.583 0.146 –

Extra-pulmonary infections (yes) 0.698 0.486–1.000 0.050 –

DP before prone positioning 0.971 0.890–1.058 0.500 –

ARDS PaO2/FiO2 class (severe)a 1.775 1.143–2.755 0.011 1.738 1.116–2.705 0.014
Infection during ICU stay (yes) 0.698 0.486–1.000 0.050 –

Fig. 2  Cumulative incidence of liberation from mechanical 
ventilation. Cumulative incidence of liberation from mechanical 
ventilation (MV) over 28 days after intubation. The four curves 
represent the cumulative incidence functions related to the 
quartiles of PaO2/FiO2 response to prone positioning referred to the 
multivariate model (Table 3)
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sustained PaO2/FiO2 improvement after the first prone 
positioning was progressively related a to lower mechani-
cal ventilation time and ICU mortality.

Severe COVID-19 is characterized by dyspnea, a res-
piratory rate of 30 or more breaths per minute, a blood 
oxygen saturation of 93% or less, a PaO2/FiO2 ratio of less 
than 300  mmHg, or infiltrates in more than 50% of the 
lung field within 24 to 48 h from the onset of symptoms 
[21]. PP has been rapidly adopted by intensivists once the 
first wave spread out to the ICUs worldwide, mainly for 
its positive effect on arterial oxygen content. This can be 
consequence of several mechanisms, which are largely 
dependent on the stage of the disease. Despite its sound 
physiological basis, PP determines a variable oxygenation 
response across COVID-19 patients, some improving 
dramatically oxygenation and others not. Recruitment 
of dorsal lung regions due to the lung edema shift from 
vertebral to sternal lung, which, furthermore, contin-
ued to receive most pulmonary blood flow (at least in 
non COVID-19-related ARDS), is the main mechanism 
thought to be involved in the oxygenation improvement 
during PP [22]. When this happens, CRS improves, and 
DP decreases because of the wider surface available for 
ventilation.

When analyzing the oxygenation in COVID-19 patients 
returning to supine position after the first PP session, the 
variable persistence of oxygenation improvement was 
found both in noninvasively and invasively ventilated 
patients [7, 15, 16]. However, this finding has never been 
previously linked with patients’ outcome. We found that 
the sustained oxygenation improvement after the first 
PP session was independently associated with a reduced 
duration of mechanical ventilation and mortality rate.

In a previous study by Lee et al. [23] in non-COVID-19 
ARDS, a sustained oxygenation after PP was associated 
to an improvement of respiratory system mechanics. In 
their paper, indeed, only responders increase CRS after 
resupination, while non-responders did not. In our pop-
ulation, responders had a slightly lower DP after PP, but 
both responders and non-responders had a comparable 
decrease in DP—and presumably in lung recruitment—
after PP. Since the improvement in DP was not differ-
ent between responders and non-responders, it cannot 
explain per se why the oxygenation increased only in the 
responders group.

To support this, a recent work by Haddam et al. found 
that the gas exchange improvement after PP could not 
be predicted by the variation of dorsal aeration meas-
ured by lung ultrasound [24]. Therefore, several mecha-
nisms, beside lung recruitment, are involved in the PaO2/
FiO2 increase following PP in ARDS and this is probably 
even more true for COVID-19-related ARDS, where the 
vascular impairment can be responsible for a defective 

hypoxic pulmonary vasoconstriction [4]. A new CT scan 
study comparing COVID-19 ARDS to an historical non-
COVID ARDS population, found, indeed, that for com-
parable lung aeration and compliance, COVID-19 ARDS 
has a significantly higher percentage of hypoxemia [25]. 
This confirms the hypothesis that COVID-19-related 
ARDS is a specific “vasocentric” phenotype of ARDS [26]. 
The oxygenation response to PP may, therefore, be a hint 
of at partially preserved ventilation/perfusion match-
ing and, therefore, an indirect sign of disease extension. 
Patients not improving oxygenation after PP may, there-
fore, highlight an extended damage of both the alveolar 
and vascular structures. A recent observational study 
demonstrated that transesophageal echocardiography 
monitoring is feasible, sensitive and promising in track-
ing individual hemodynamic response to PP, which may 
be unpredictably deleterious in some patients [27]. The 
heterogeneous effect on the right ventricle output may, 
indeed, help to understand the different responsiveness 
to PP seen in these patients. Future studies are needed to 
address this key physiopathological point.

Previous studies in non-COVID ARDS found that an 
oxygenation improvement after PP was marginally [13] or 
not associated [14] with mortality. Despite mortality was 
not the primary outcome of this study, we believe that the 
association between response to PP and mortality may 
be a peculiar characteristic of COVID-19-related ARDS 
and that further studies need to specifically address this 
point.

Non-responders had a prolonged duration of mechani-
cal ventilation, an increased risk of death and a higher 
rate of tracheostomy compared to responders. This was 
not unexpected, since a reduced response to PP was 
independently associated to a higher risk of prolonged 
liberation from mechanical ventilation, while no differ-
ences were found in the complication rates.

Since the oxygenation response to the first PP can 
highlight patients at major risk of death, it may be used 
to inform who may benefit from a further level of assis-
tance. Beside PP, indeed, other interventions can be used 
to increase oxygenation in COVID-19, like inhaled nitric 
oxide [5, 28], intravenous Almitrine [29], ECMO [30]. 
The reduced oxygenation response to PP may be, there-
fore, helpful to select patients needing alternative ventila-
tory treatment. Indeed, the only three patients that in our 
population underwent ECMO were in the non-respond-
ers group.

A prolonged time of prone positioning (36  h) was 
recently suggested to help preserving the oxygenation 
improvement after resupination [31]. In our popula-
tion, both responders and non-responders had the same 
time of PP, but it is worth to explore in future studies if 
non-responders may need a prolonged session of prone 
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positioning to fully exploit the potential of the maneu-
ver. We found that a sustained oxygenation improvement 
after prone positioning was associated with better out-
come; whether this was linked to a higher organ oxygen 
delivery, to a different stage of the disease or to a differ-
ent mechanism linked to PP disease must be explored 
by future studies. Poor response to prone positioning, 
moreover, could be potentially used to identify patients 
that are at higher risk of prolonged weaning and, there-
fore, modify the policy of tracheostomy, sedation and 
ventilation. During prone positioning, all patients were 
paralyzed and ventilated in volume-controlled ventila-
tion. Recent evidence [32] show that spontaneous breath-
ing could be beneficial during prone position and the 
effect of spontaneous breathing during prone position-
ing in COVID-19 patients has to be explored. Moreover, 
despite no differences were found in driving pressure 
change, PEEP and recruitment may have played a role in 
some patients. Further studies are needed to assess the 
impact of PEEP [33], lung recruitment and/or recruitabil-
ity [34, 35] on PP response.

Our study has several limitations. First, the ventilatory 
treatment and weaning were not standardized among 
participating, thus adding potential confounding factors. 
Second, for many variables, we asked the participating 
centers to collect the lowest values within the first 5 days 
of ICU stay, thus possibly missing important data on 
the precise time course of these variables. Third, several 
experimental COVID-19 therapies were tested in differ-
ent centers during the conduction of present study. Forth, 
we did not evaluate thrombosis among complications, 
since this parameter can be difficult to be assessed, both 
for micro and macro thrombosis. Finally, we analyzed the 
response to the first prone positioning session. Further 
studies should evaluate if the response to subsequent PP 
sessions could be useful in predicting outcome. In our 
analysis, we grouped patients based on the oxygenation 
response to PP. Before performing the maneuver, no sin-
gle variable was predictive of the response. Moreover, all 
patients started PP per clinical decision, and therefore, 
it is possible to assume that the severity of patients in 
the groups was the same and this was confirmed by the 
baseline characteristics of the groups. The only mechani-
cal  difference among the two groups  in the first  5 days 
of ICU stay  was  the lowest  Crs, since this was slightly 
higher in responders. Despite this, in both groups PP was 
decided on oxygenation and not on respiratory mechan-
ics. Post-hoc power analysis revealed that the primary 
outcome (VFDs) had a power of 0.92, meaning that there 
is an 92% chance of detecting a difference as statistically 
significant, if in fact a true difference exists.

Conclusions
A sustained oxygenation response after the first PP ses-
sion in COVID-19 ARDS patients is an independent 
predictor of prolonged liberation from mechanical ven-
tilation and ICU survival. Oxygenation improvement to 
PP is not related to improvement in DP. Further stud-
ies are needed to evaluate if the oxygenation response 
to PP can be used in the decision-making process in 
severe mechanically ventilated COVID-19 patients.
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