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Abstract 

Among the long-term consequences of sepsis (also termed “post-sepsis syndrome”) the increased risk of unexplained 
cardiovascular complications, such as myocardial infarction, acute heart failure or stroke, is one of the emerging 
specific health concerns. The vascular accelerated ageing also named premature senescence is a potential mecha‑
nism contributing to atherothrombosis, consequently leading to cardiovascular events. Indeed, vascular senescence-
associated major adverse cardiovascular events (MACE) are a potential feature in sepsis survivors and of the elderly 
at cardiovascular risk. In these patients, accelerated vascular senescence could be one of the potential facilitating 
mechanisms. This review will focus on premature senescence in sepsis regardless of age. It will highlight and refine 
the potential relationships between sepsis and accelerated vascular senescence. In particular, key cellular mechanisms 
contributing to cardiovascular events in post-sepsis syndrome will be highlighted, and potential therapeutic strate‑
gies to reduce the cardiovascular risk will be further discussed.

Highlights 

•	 With improved management of patients, sepsis survivors are increasing each year.
•	 Early cardiovascular complications, of yet undeciphered mechanisms, are an emerging health issue in post-sep-

sis syndrome.
•	 Premature senescence of endothelium and vascular tissue is proven an accelerated process of atherogenesis in 

young septic rats.
•	 An increasing body of clinical evidence point at endothelial senescence in the initiation and development of ath-

erosclerosis.
•	 Prevention of premature senescence by senotherapy and cardiological follow-up could improve long-term septic 

patients’ outcomes.
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Sepsis as a global health priority
Sepsis is considered as a life-threatening multiple organ 
dysfunction caused by a dysregulated host response 
to infection altering systemic arterial function [1, 2]. 
Although the global burden is difficult to ascertain, recent 
data estimated 48.9 million cases and 11 million sepsis-
related deaths worldwide in 2017, which accounted for 
almost 20% of all global deaths [3]. Sepsis has, therefore, 
been recognized as a global health priority by the World 

http://orcid.org/0000-0002-1005-9095
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13613-021-00937-y&domain=pdf


Page 2 of 17Merdji et al. Annals of Intensive Care          (2021) 11:166 

Health Organization (WHO) [4]. Indeed septic shock, 
the most severe form of sepsis characterized by profound 
circulatory and cellular/metabolic failure [5], remains the 
leading cause of mortality in intensive care unit (ICU) 
[6, 7]. However, in high-income countries the long-term 
survival is improving, with approximately 14 million sep-
sis survivors each year [8], raising at the same time new 
health consequences and a significant burden for patients 
and society [9, 10]. Thus, post-sepsis syndrome involves 
multiple long-term deficits, including the immune, cog-
nitive, psychiatric, renal, and cardiovascular systems [11, 
12]. Notably, nearly a quarter of sepsis survivors will be 
readmitted to hospital within 30  days of discharge [13]. 
Long-term consequences greatly contribute to the high 
total economic cost of the disease, which is estimated to 
be around US$67 billion yearly in the USA alone [14].

Cardiovascular‑associated post‑sepsis 
complications as an emerging serious health threat
Recent data suggest that the increased risk of long-
term mortality among sepsis survivors could be related 
to increased post-sepsis cardiovascular diseases [15]. 
Hence, sepsis survivors have an increased risk to develop 
cardiovascular disease with elevated major adverse cardi-
ovascular events (MACE), including nonfatal myocardial 
infarction, acute heart failure or nonfatal stroke. Hospi-
talization for severe pneumonia leads to an increased risk 
of developing cardiovascular disease that persists for at 
least 10  years [16]. Yende et  al. found that survivors of 
severe sepsis had a twofold increased cardiovascular risk 
within the first year following hospital discharge as com-
pared to risk- and age-matched individuals. Interestingly, 
in this study even the subgroup of sepsis survivors who 
did not have cardiovascular disease before the hospitali-
zation, had a higher risk of subsequent cardiovascular 
events [17]. Recently, a meta-analysis of 27 studies (that 
overall included 1,950,033 sepsis survivors and 3,510,870 
unique non-septic control subjects) reported that sepsis 
may represent a long-term cardiovascular disease risk 
factor, with magnitudes of relative risk comparable to 
those of conventional cardiovascular disease risk factors 
such as hypertension, dyslipidemia, and diabetes mel-
litus. This potential risk remaining significantly elevated 
for at least 5  years after hospital discharge [18]. A pos-
sible explanation would be an unusual rate of atheroscle-
rosis of still undeciphered origin [19]. One highly likely 
contributor is the endothelium as demonstrated for the 
acute phase in preclinical data [20] and indirectly from 
clinical assessment of biomarkers of the endothelial dys-
function [21]. Sepsis switches the endothelial protective 
functions to an athero-thrombogenic profile resulting 
in endothelial dysfunction with altered vasoregulation, 
loss of barrier function, potentiating inflammation, and 

coagulation abnormality [22–24], finally leading to organ 
dysfunction.

A potential mechanism that may link acute and chronic 
endothelial dysfunction is accelerated vascular aging 
associated with premature endothelial senescence ulti-
mately promoting atherothrombosis (Fig. 1).

Vascular senescence, atherosclerosis 
and inflammageing
As a proof of concept of the link between endothe-
lial senescence and atherosclerosis, a pioneer work 
reported that senescent endothelial cells (ECs) over-
lay atherosclerotic plaques, in post-mortem aortic arch 
histological section from patients older than 70  years. 
These ECs were seen as a thin continuous layer of lumi-
nal senescence-associated β-galactosidase (SA-β-Gal) 
activity, highly represented in vulnerable plaque [25]. In 
mice, early signs of endothelial senescence are detected 
predominantly at sites of disturbed flow and low shear 
stress during atherogenesis in middle-aged individuals. 
In senescent animal models, they are characterized by an 
early endothelial dysfunction, suggesting that premature 
ageing-related endothelial dysfunction may contribute 
to the focal nature of the pathology and possibly also 
to its initiation and progression [26]. In rodent models 
or human samples, a progressive expression of senes-
cence biomarkers p53, p21, p16 and accumulating SA-β-
Gal activity occur in ageing vascular tissues, including 
endothelial cells, vascular smooth muscle cells, and mac-
rophages [27–32].

In an experimental model of atherosclerosis-prone 
mice, Kaynar and colleagues [33] corroborated the asso-
ciation between sepsis and the occurrence of cardio-
vascular events by showing that the cecal ligation and 
puncture (CLP) accelerates aortic atherosclerotic plaque 
formation within the subsequent 5  months. Although 
these data confirm the association between sepsis and 
atherosclerosis, the authors concluded that the mecha-
nism underlying this accelerated atherogenesis remains 
to be fully elucidated. Indeed, these data point at the 
need to develop long-term follow-up murine models of 
sepsis.

Recently, our team has provided new insights by char-
acterizing a premature vascular senescence in rats after 
CLP surgery [34]. Sepsis was found to accelerate pre-
mature senescence in the aorta tissue with a significant 
upregulation of p53 and downstream p21 and p16 senes-
cence markers as early as 7 days after CLP, values peak-
ing 3 months later. Of note, p53 was mainly detected in 
the aortic endothelium by immunofluorescence and con-
focal microscopy, thereby confirming its prime and key 
role. In addition, our data suggest a link between arte-
rial senescence and a remote endothelial dysfunction in 
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conductance and resistance arteries that was character-
ized by long-term blunted endothelium-dependent relax-
ation and contraction at 3 months.

One of the other main contributors to the link between 
sepsis, senescence and atherosclerosis for cardiovascular 
disease is “inflammageing” [35]. Inflammageing is a con-
dition characterized by high blood and tissue levels of 

pro-inflammatory markers associated with susceptibility 
to cardiovascular diseases in the elderly. The physiopa-
thology of inflammageing remains poorly deciphered to 
date and relies on immune cell dysregulation, microbi-
ota alteration, increased intestinal permeability, chronic 
infections, and central obesity. At the cellular level, mito-
chondrial-mediated oxidative stress, activation of the 

Fig. 1  Potential mechanisms contributing to endothelial senescence-driven cardiovascular complications after sepsis and septic shock. Sepsis 
and septic shock survivors have an increased risk of developing cardiovascular events such as myocardial infarction and stroke. Sepsis-induced 
premature senescence could explain an accelerated atherogenesis process leading to early major adverse cardiovascular events. SASP 
senescence-associated secretory phenotype
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NLRP3 inflammasome, and genetic susceptibility con-
tribute to inflammageing as well as the pro-inflammatory 
senescence-associated secretory phenotype (SASP) [36]. 
Advanced atherosclerotic plaques exhibit both senes-
cence markers such as p16 and the SASP which further 
fuels inflammation, thereby destabilizing the atheroscle-
rotic plaque, suggesting a key contribution of inflam-
mageing [37].

Senescence: causative or coincidental to ageing?
Physicians and philosophers of ancient Greece have 
already questioned aging as a disease or a natural pro-
cess [38]. The Hippocratic Corpus asserted that old age 
inevitably led to frailty and then death and therefore, 
considered aging an incurable disease. The interrogation 
persisted in the Latin world, “Senectus ipsa morbus est”, 
reflecting the disease paradigm while the Roman Galen 
asserted that, unlike diseases that are abnormal, ageing 
is universal and is, therefore, a natural process. Although 
the answer is not yet conclusive and this dichotomy still 
persists nowadays, recent progress in biology allows a 
better understanding of aging and senescence [39].

Replicative senescence: a reversible biological clock?
Senescence describes a state of permanent replicative 
arrest in normally proliferative cells, losing their ability 
to divide. Senescence is not equivalent to quiescence or 
death. Indeed, senescent cells remain alive and metaboli-
cally active for a long period of time [40]. Besides exit-
ing the cell cycle, the senescent state is accompanied by a 
failure to re-enter the cell cycle in response to mitogenic 
stimuli. Other signatures of senescence are a metabolic 
reprogramming, autophagy and abnormal chromatin 
rearrangement such as heterochromatin foci, also named 
senescence-associated heterochromatic foci (SAHF) 
whereupon proliferation-related genes are silenced. In 
addition, the senescence-associated secretory phenotype 
(SASP) initiates a paracrine dissemination of an oxidative 
and pro-inflammatory signal. At the level of the organ-
ism, senescence may appear as a defense mechanism that 
limits the replication of old or damaged cells bearing 
accumulated DNA repair errors and therefore preserves 
the homeostatic balance.

“Replicative senescence” is considered a biologi-
cal clock triggered by aging. It is caused by a progres-
sive shortening of telomeres upon each cell division. 
Described in 1961, the “Hayflick limit” was the first 
in  vitro observation of a limited human fibroblast pro-
liferation capacity, their mitosis being abolished after 50 
cell divisions, despite the addition of growth factors and 
the absence of contact inhibition [41]. Initially, several 
investigators were skeptical, claiming an isolated in vitro 
artifact. There is now accumulating in vivo evidences that 

senescence is a true biological response [42] progres-
sively occurring in age-related pathologies, including 
type 2 diabetes, obesity, atherosclerosis, chronic obstruc-
tive pulmonary disease (COPD), pulmonary fibrosis, and 
many others diseases [43]. In the recent decades, the 
improvement of public health has extended the human 
lifespan thereby favoring senescence as a major emerging 
contributing factor to chronic diseases in the elderly [44].

Accelerated senescence: a stress‑induced ageing
In the year 2000, pioneering work by Olivier Toussaint 
and others showed that there is another major way, other 
than chronological aging, for cells to become senescent. 
Indeed, a significant cellular stress can trigger senescence 
even in young cells through a phenomenon known as 
stress-induced premature senescence (SIPS) [45]. Recent 
studies suggest that sepsis, during which many stressors 
are severely and significantly exacerbated, is a condition 
of accelerated senescence.

Features of senescent cells shared by replicative 
senescence cells and stress‑induced premature 
senescence cells
Several markers are used to detect senescent cells, among 
which senescence-associated beta-galactosidase (SA-β-
Gal) activity is the current gold standard for the detection 
of senescence in vitro [46]. The characteristic elevation of 
the β-Gal activity in senescent cells is the consequence 
of both the enzyme upregulation [47] and an increase in 
the lysosomal mass [48] with paradoxical decline of their 
degradative ability. β-Galactosidase strictly operates at 
pH 4.5 in healthy cells while it is still active at a pH of 6 
in senescent cells, thereby enabling the quantification of a 
senescence-associated β-galactosidase (SA-β-Gal) activ-
ity [49], one of the first markers to be used [50].

However, SA-β-Gal activity measurement is a compar-
ative assessment. In vivo, its high sensitivity to sampling 
and storage conditions and the need of a non-senescent 
control make the analysis challenging. Nevertheless, key 
characteristics in all types of cell senescence are the cell 
cycle arrest and the upregulation of p53, p21 and p16, 
often used as alternate markers. Still, cell cycle arrest 
itself cannot be considered a truly surrogate marker of 
senescence, since multiple other cellular responses can 
drive a stable replicative arrest. Indeed, the inability to 
express proliferation genes, even in a promitogenic envi-
ronment [51, 52] distinguishes senescence from quies-
cence, a non-proliferative state of the cells that is readily 
reversed in response to mitogens. Of note, mTOR plays 
a key role in the shift between senescence or quiescence: 
when both p53 and mTOR are activated, cells become 
senescent, while the sole activation of p53 leads to quies-
cence [53].
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In the absence of reliable direct assessment, sev-
eral nonexclusive markers are reported in the literature 
to monitor cell senescence. The shift to a SASP [54], 
also termed senescence-messaging secretome [55], is 
undoubtedly the most characteristic and relevant fea-
ture of senescent cells and a potential biomarker. SASP 
is associated with the secretion of a plethora of immune 
modulators, inflammatory cytokines, growth factors, 
chemokines, and proteases in the close microenviron-
ment of senescent cells.

Each cell linage is characterized by a specific SASP pat-
tern of secreted molecules, several studies suggesting up 
to 103 molecules per cell type [43], often determined by 
the initiator of the senescence response [56]. Key compo-
nents are pro-inflammatory tumor necrosis factor alpha 
(TNF-α), cytokines interleukin-6 (IL-6), interleukin-8 
(IL-8), and interleukin-1 alpha (IL-1 α) having a jux-
tacrine role on the surrounding cells, and matrix metallo-
proteinases (MMP-1 and -3) acting on the remodeling of 

the extracellular matrix [57]. SASP relies on pro-inflam-
matory signaling pathways including NF-κB, mTOR and 
p38 mitogen-activated protein kinase (MAPK) [58].

How is senescence different from apoptosis?
Apoptosis and senescence pathways drive alternative cell 
fates that can often be triggered by the same stressors. 
Indeed, once cells enter senescence, they become resist-
ant to extrinsic apoptosis by overexpressing decoy recep-
tor 2 (DCR2) [43] and to intrinsic apoptosis [59–61] at 
least in part via the upregulation of BCL-2 family mem-
bers [62], being themselves under the eventual control of 
p53, a transcription factor involved in autophagy, DDR, 
cell cycle progression and apoptosis [63]. While high 
stress can lead to apoptosis, then cell death and elimina-
tion, intermediate stress can lead to senescence with per-
sisting cell dysfunction (Fig. 2).

Fig. 2  Difference between senescence and apoptosis. Intermediate stress can lead to senescence via p53 and p16 pathway, resulting in persisting 
cell dysfunction. High cellular stress can induce apoptosis through upregulation of p53, resulting to cell death and elimination. High level of p53 
contributes to the induction of BH3-only proteins (BIM, PUMA, NOXA) that inhibits pro-survival BCL-2 family members (BCL-XL, MCL-1, BCL 2)
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Endothelial senescence and vascular ageing
Endothelial senescence is associated with morphological 
and metabolic changes. The EC becomes flatter (“egg on 
a plate morphology”) and enlarged with an increasingly 
polypoid nucleus (Fig.  3). Such changes are accompa-
nied by a loss of cytoskeleton integrity, and altered cell 
proliferation, migration and angiogenesis [64]. Senescent 
ECs show decreased endothelial nitric oxide (NO) pro-
duction, increased endothelin-1 (ET-1) release, elevated 
inflammatory response [65], and have a specific SASP 
profile detailed in Table 1 [66–69].

Accumulating senescent ECs induce vascular, struc-
tural, and functional changes shifting the endothelium 
from a protective monolayer preserving physiological 
vascular tone to a pro-inflammatory, athero-thrombo-
genic dysfunctional barrier, all of which favor cardiovas-
cular disease [70, 71] (Fig. 4).

What are the paths leading to cellular senescence?
One of the major discoveries of the early twenty-first cen-
tury is that in addition to replicative senescence, cells can 
also undergo unplanned senescence when subjected to 
stressors. SIPS and replicative senescence share overlap-
ping pathways with distinct checkpoints.

Fig. 3  Characteristics of senescent endothelial cell. Senescent cells become irregular and flat with cytoplasmic and nuclear enlargement, multiple 
organelle modifications, including enlarged and dysfunctional lysosomes enclosing lipid and protein aggregates. Senescent cells can exhibit 
hyperelongated mitochondria resulting from unbalanced mitochondrial fission and fusion thereby favoring ROS generation. An expanded Golgi 
apparatus is also observed, along with nuclear enlargement and chromatin condensation such as SAHF. Senescence-associated dysfunction 
includes the SASP with autocrine and paracrine effects, the apoptosis resistance and cell cycle arrest. ROS reactive oxygen species, SAHF 
senescence-associated heterochromatin foci, SASP senescence-associated secretory phenotype

Table 1  Main endothelial SASP components

TNF-α tumor necrosis factor alpha, TGF-β transforming growth factor beta, 
IL-1 interleukin-1, IL-6 interleukin-6, CSFs colony-stimulating factor, CXCL-1 
chemokine (C-X-C motif ) ligand-1, CXCL-8 chemokine (C-X-C motif ) ligand-8, 
CCL-2 C-C motif chemokine ligand 2, MMPs matrix metalloproteinases, PAI-1 
plasminogen activator inhibitor-1, VEGF vascular endothelial growth factor, EGF 
epidermal growth factor, IGFBPs insulin-like growth factor-binding protein

Main endothelial SASP components

Pro-inflammatory mediators TNF-α, TGF-β, IL-1, IL-6, CSFs

Pro-inflammatory chemokines CXCL-1, CXCL-8, CCL-2

Proteases and mediators of tissue remod‑
eling

MMPs, PAI-1

Growth factors VEGF, EGF, IGFBPs
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DNA damage response (DDR) is a major driver in both 
replicative senescence and SIPS, respectively, initiated 
by telomere shortening or different stressors (Fig.  5). In 
replicative senescence, telomeres via the telosome com-
plex [72], prevent the DDR machinery from recognizing 
chromosome-free ends as double-strand breaks to be 
repaired, a potential threat leading to erroneous chromo-
some recombination or fusion events [73]. When telom-
eres become critically short, the protective telosome is 
no longer recruited to the DDR, thereby favoring senes-
cence. The other senescence pathway, triggered by stress-
ors, is controlled by the INK4/ARF locus, extensively 
studied in oncogene-induced senescence (OIS) [74].

p53 is the main checkpoint in the DDR pathway. It can 
be activated directly by ATM/ATR or indirectly via the 
activation of checkpoint kinase 1 (Chk1) and checkpoint 
kinase 2 (Chk2), two serine/threonine-specific protein 
kinases (Fig. 5).

In SIPS, p53 can be activated via ARF (ADP ribosyla-
tion factor), a small GTPase of the RAS superfamily 
family, which blocks the activity of MDM2, an ubiquitin 
ligase leading to p53 degradation. p53 induces the tran-
scription of the downstream cyclin-dependent kinase 
inhibitor p21, which blocks CDK2 activity, resulting in 
hypophosphorylated retinoblastoma protein (pRB). The 
binding of hypophosphorylated pRB to the transcription 

Fig. 4  Features of dysfunctional senescent endothelial cell. Accumulation of senescent endothelial cells impedes vascular homeostasis. Main 
consequences include a progressive acquisition of an inflammatory endothelial phenotype, a procoagulant state, a proatherogenic phenotype, and 
the loss of vascular tone with reduced NO availability and increased release of endothelin. NO nitric oxide

factor E2F will further suppress the expression of S‑phase 
genes leading to a cell cycle arrest [75].

The activation of the INK4/ARF locus not only triggers 
ARF, but also p16, a member of the INK4 cell cycle inhib-
itors. p16 directly binds to the cyclin-dependent kinases 
CDK4 and CDK6, thereby blocking the downstream 
phosphorylation of the pRB tumor suppressor.

Ongoing investigations on the activation of the INK4/
ARF locus point at the formation of the polycomb group 
(PcG) proteins complexes (PRC 1 and PRC 2) as the main 
initiator of the response to stressors. PcG proteins act as 
transcriptional repressors through the trimethylation or 
mono-ubiquitination of histones H3 and H2A, thereby 
controlling the expression of genes involved in DNA 
repair at specific.

How is PcG altered during senescence is yet not com-
pletely understood, recent data pointing at a possible 
implication of silencing miRNA [76]. Strikingly, in vari-
ous cell models of senescence, the interaction of PcG 
with the INK4/ARF locus appears also under epigenetic 
control via long non-coding (Lnc) RNAs serving as scaf-
folds, such as ANRIL (antisense non-coding RNA in the 
INK4 locus) [77–79].

Amplification of the senescent response occurs 
through heterochromatinization of cell-cycle genes in 
SAHF (Fig.  3) [80] and via the SASP-driven production 
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of pro-inflammatory cytokines such as IL-6 that favor the 
cell-cycle arrest [81].

Stress induces premature senescence: SIPS
In 2000, Toussaint and colleagues reported a pioneer 
observation that cultured human fibroblasts robustly 
entered a senescence-like state several days after repeated 
exposure to mild treatment with tert-butylhydroperoxide 
with sublethal oxidative stress [82]. This work was then 
corroborated using sustained or repeated cell treatments 
by numerous chemical stressors like ethanol [83], chronic 
exposure to pollutants (cigarette smoke) or irradiation 
(UV-B light) [84]. SIPS is mainly initiated by DNA dam-
age, DNA breaks activating the DDR pathway in the 
absence of telomere shortening [85].

Recent data have challenged the concept that SIPS is a 
telomere-independent process, distinct from replicative 

senescence. Indeed, DNA damage during SIPS occurs 
randomly all over the genome including telomeres. How-
ever, whereas most of the DNA damage will be repaired 
within 24  h, telomeric regions will remain unrepaired 
for months, maintaining a sustained unresolved DNA 
damage [86]. Of note, this reveals that pathways lead-
ing to senescence, either premature or replicative, may 
at some point share intricate features. Recently, SENEX, 
an endothelial senescence-inducing gene, discovered as 
a result of serendipity, acting in response to H2O2 was 
shown to induce the p16/Rb pathway by up-regulating 
both p16 mRNA and protein together with a decrease 
in the hyperphosphorylated Rb protein level [87]. This 
gene does not alter the expression of either p53 or p21 
nor affects telomere length pointing at a prevailing p16 
pathway (Fig. 5).

Fig. 5  Main pathways leading to cellular senescence. Mechanisms that drive cellular senescence include the direct activation of the DNA damage 
response (DDR) through the ATM/ATR pathway and/or of the INK4a/ARF locus through the assembly of PcG protein complexes eventually via the 
ANRIL scaffolding Lnc RNA. The INK4 family, among which p16, are cyclin-dependent kinase inhibitors targeting CDK4/6. Ultimately, p53/p21 and 
p16/Rb pathways are key players driving senescence. ANRIL: antisense non-coding RNA in the INK4 locus, ARF ADP ribosylation factor, ARHGAP18 
(Rho GTPase activating protein 18), ATM ataxia-telangiectasia mutated, ATR​ ataxia-telangiectasia mutated and Rad3 related, CDKs cyclin-dependent 
kinases, Chk1 checkpoint kinase 1, Chk2 checkpoint kinase 2, DDR DNA damage response, INK4 inhibitors of CDK4, p16/Rb p16/retinoblastoma 
protein, PcG polycomb, Lnc RNA long non-coding RNA, ROS reactive oxygen species
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Sepsis as a stress factor inducing premature 
senescence in several tissues
While pathophysiological mechanisms of sepsis are 
widely described in the elderly [88], this review will focus 
on sepsis-induced premature senescence.

Indeed, during the previous decade, several in vitro and 
in vivo studies have highlighted the association between 
sepsis and premature senescence (Table 2). In vitro, a sin-
gle 24-h exposure to lipopolysaccharide (LPS) induces 
the senescence of type II pulmonary alveolar epithelial 
cells detectable after 7 days by SA-β-Gal activity with no 
telomere shortening [89]. Viruses are also septic stressors 
of pulmonary cells leading to elevated SA-β-Gal activity 
[90]. As evidenced in human pneumocyte type II cells 
(A549) and nasopharyngeal cells (HEp-2), the human 
respiratory syncytial virus (hRSV) causes strong ATM/
p53/p21-dependent activation of the DDR, as well as the 
nuclear recruitment of phosphorylated γ-H2AX, a typical 
marker of the DDR response. Same effect has been dem-
onstrated in murine Neuro2a cells on which the Avian 
H7N9 influenza virus induces cellular senescence in vitro 
[91]. Premature LPS-induced senescence has been also 
characterized in murine BV2 microglia cells [92], in adi-
pocytes progenitors [93] or dental pulp stem cells [94].

In vivo, data confirming sepsis-induced premature 
senescence in young individuals are scarce. In a murine 
endotoxemia model a ~ 20% reduction in telomere length 
by qPCR was reported in spleen and kidney, 48  h after 
intraperitoneal injection of a high LPS concentration, 
while no other senescence marker was assessed [95]. 
More in-depth characterization was brought by elevated 
p16 and SA-β-Gal activity in lung tissue measured after 
24 h in a two-hit septic mice model using CLP followed 
by sublethal Pseudomonas aeruginosa infection [96]. 
Additionally, airway epithelium senescence was also evi-
denced by γ-H2AX and CDKN2A labeling from day 4 to 
day 30 in hRSV-infected mice [90]. Same effect has been 
demonstrated in murine Neuro2a cells in vitro on which 
the H7N9 influenza virus induces cellular senescence.

In a rat model, we recently evidenced that CLP-induced 
sepsis causes a time-dependent arterial accumulation of 
senescence markers, peaking at 3 months post-induction 
and associated with vascular dysfunction [34].

To date, the only data describing accelerated senes-
cence after sepsis in human were reported by Oliveira 
et  al. Their analysis showed that telomere length, from 
blood samples of patients who developed sepsis in the 
trauma department, was significantly shortened 1  week 
after sepsis initiation [95].

Altogether, these observations strongly suggest that 
a senescent shift may progressively occur after sepsis as 
an ongoing process thereby questioning the timescale to 
study consecutive tissue damages.

Next‑generation therapies targeting senescent 
cells for post‑sepsis cardiovascular disorders
Many pharmacological studies have indicated that spe-
cifically eliminating senescent cells (“senolysis”) by using 
senolytic drugs or by suppressing the senescent pheno-
type with senostatics may contribute to reversal of the 
aging phenotype (Fig.  6) [97, 98] and should be consid-
ered as a next-generation therapy for atherosclerotic 
disorders [99, 100]. These senotherapies are usually non-
specific and do target multiple pathways.

Senolytics
In a major 2018 study, Kirkland and his colleagues at the 
Mayo Clinic provided a proof-of-concept evidence that 
transplanted senescent cells can cause physical disabil-
ity and reduced lifespan in young and middle-aged mice. 
They also demonstrated that intermittent oral adminis-
tration of a senolytic cocktail of dasatinib and quercetin 
significantly reversed the effect of senescent cells and 
increased median survival by 36% [98].

To date, one main senolytic strategy is to shift the 
senescent cells into apoptotic ones by triggering the 
member of the BCL-2 family [101], most of them being 
up-regulated in senescent cells [102]. Indeed, the most 
studied senolytics are dasatinib (a pan inhibitor of tyros-
ine kinases), quercetin (a flavonoid present in many fruits 
and vegetables with antioxidant and anti-inflammatory 
properties, mainly targeting PI3-kinase and serpins) and 
navitoclax previously named ABT263 (a mimetic of the 
BH-3 domain of anti-apoptotic proteins BCL-2 and Bcl-
xL) [62, 103, 104]. Navitoclax would appear promising 
in the prevention of potential sepsis-induced cardiovas-
cular disorders, since it was demonstrated to efficiently 
reduced plaque burden, number and average size in 
atherosclerosis-prone mice with established senescence 
[99]. Similarly, dasatinib and quercetin were shown to 
prevent vasomotor dysfunction in aged mice and reduce 
senescence burden and arterial plaque calcification in an 
ApoE−/− high-fat diet murine model [105]. While target-
ing BCL-2 may lead to unwanted cellular triggering and 
toxicity [106], senescence-specific killing compound 
1  (SSK1) would better target senescent cells with low 
impact on the self-renewal of target cells. This new seno-
lytic prodrug is specifically cleaved by the enhanced lyso-
somal β-galactosidase activity characterizing senescent 
cells and transformed into cytotoxic gemcitabine induc-
ing apoptosis, as demonstrated in mice and human ECs 
in vitro [107].

In 2019, first evidence that senolytics (dasatinib and 
quercetin) are safe and efficient in humans was published 
[108]. Later the same year, the same team from the Mayo 
clinic reported for the first time in human that these 
senolytics reduced key circulating SASP factors (IL and 
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MMP), but also senescence markers (p21, p16 and SA-β-
Gal activity) in adipose tissue biopsies [103].

Senostatics
Inhibiting SASP, via melanin for example [109], without 
causing adverse effects is challenging because many path-
ways that may activate SASP (such as NF-κB or mTOR) 
are also involved in critical processes such as tumor sur-
veillance or the immune system [110].

Interestingly, SENEX is a TNFα-sensitive gene and 
in vitro treatment by low concentration of TNFα prompts 
the endothelial downregulation of this gene leading to 
apoptosis, confirming SENEX as a promising target in 
the early prevention of sepsis-induced endothelial senes-
cence [87].

Another vascular protective strategy would be to pre-
vent the shift from endothelial quiescence to senes-
cence by inhibiting the mTOR pathway. Confirmation 
was brought in atheroprone ApoE−/− adult mice 
treated by metformin that inhibited endothelial cell 
senescence and thus contributed to partially decreased 
atherosclerotic plaque formation [111]. This is of par-
ticular interest because metformin is also known to exert 

protective effect on endothelial cells in sepsis via adeno-
sine monophosphate-activated protein kinase AMPK 
activation (which exert inhibition of mTOR) [112].

Conclusion
Post-septic cardiovascular disease, as a part of the mor-
bidity and mortality observed in the post-sepsis syn-
drome, is one of the emerging health issues. Premature 
senescence of endothelium and vascular tissue appears 
to be one of the mechanisms involved in the accelerated 
atherogenesis in sepsis survivors. Targeting pro-senes-
cent endothelial cells with senotherapy in sepsis seems 
promising to delay endothelial senescence and improve 
vascular health and long-term outcomes after sepsis.
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Glossary

Apoptosis �is a form of programmed cell death 
with a key role in the removal of 
potentially harmful and damaged 
cells such as precancerous or virus-
infected cells. Apoptotic cells are 
characterized by DNA fragmenta-
tion, membrane blebbing, forma-
tion of apoptotic bodies, and activa-
tion of proteolytic enzymes such as 
caspases.

Atherosclerosis �a chronic inflammatory disease of 
large and medium-sized arteries 
that lead to the formation of fibro-
fatty lesions in the artery wall pre-
dominantly at sites of disturbed 
flow where endothelial senescence 
emerges.

Cecal ligation 
and puncture 
(CLP)

�rat model of sepsis. CLP-rats 
undergo a laparotomy, a ligation and 
puncture of the cecum, which is then 
reintegrated in the peritoneum. Rats 
develop peritonitis within few hours, 
resulting in sepsis or septic shock. 
The severity of sepsis can be modu-
lated via the number and size of the 
punctures.

DNA dam-
age response 
(DDR)

�involves a complex network of genes 
that can promote cell-cycle arrest to 
repair DNA lesions induced by dif-
ferent kind of stress. DDR can induce 
cell senescence in case of irreparable 
DNA damage.

Endothelium �monolayer-type of epithelium lining 
the interior of the heart and blood 
vessels. Under normal circumstance, 
the endothelial surface is a protective 
barrier which displays antiaggregant, 
anticoagulant and anti-inflammatory 
features.

H2O2 �Hydrogen peroxide is part of the 
reactive oxygen species, a group 
of molecules produced in the cell 
through metabolism of oxygen. It is 
one major contributor to oxidative 
damage.

Inflammageing �a condition that progressively devel-
ops with age and characterized by 
modification of the immune system 
and elevated levels of blood inflam-
matory markers that favor high sus-
ceptibility to chronic morbidity, inva-
lidity, frailty, and premature death.

Lipopolysac-
charide (LPS)

�essential component of the outer 
membrane of Gram-negative bacte-
ria. Frequently used to mimic the ini-
tial acute inflammatory response to 
sepsis, both in vivo and ex vivo.

https://biorender.com/
https://biorender.com/
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Major adverse 
cardiovascular 
events

�is a composite endpoint frequently 
used in cardiovascular research. 
First defined as a composite of non-
fatal myocardial infarction, nonfa-
tal stroke, and cardiovascular death 
(classical 3-point MACE). It can also 
include hospitalization for heart fail-
ure in some studies (4-P MACE). 
Detection and treatment of the risk 
factors for MACE are critical to 
improve health and longevity.

P o s t - s e p s i s 
syndrome

�Consists of immunological, cardio-
vascular, and cognitive deficits per-
sisting long after hospital discharge, 
resulting in more frequent rehospi-
talizations due to recurrent sepsis, 
altered quality of life, and increased 
morbidity and mortality. It affects up 
to 50% of sepsis survivors.

S e n e s ce n ce -
associated het-
erochromatic 
foci (SAHF)

�are specialized domains of faculta-
tive heterochromatin contributing to 
silencing of proliferation-promoting 
genes (such as E2F target genes) in 
senescent cells.

S e n e s c e n c e 
a s s o c i a t e d 
secretory phe-
notype (SASP)

�defines the ability of senescent cells 
to express and secrete a broad range 
of extracellular modulators including 
cytokines, chemokines, proteases, 
growth factors and lipids. SASP 
can mediate tumor suppression 
and wound healing but also chronic 
inflammation and age-related 
diseases.

Sepsis �dysregulated host response to an 
infection, resulting in life-threaten-
ing organ dysfunction.

Septic shock �sepsis with acute circulatory fail-
ure, defined by low blood pressure 
requiring vasopressors and by hyper-
lactatemia, reflecting tissue hypoxia.

Telomere �specific DNA–protein structures 
found at both ends of each chro-
mosome, protecting genome from 
nucleolytic degradation, unnecessary 
recombination, repair, and interchro-
mosomal fusion. With replication 
cycles telomeres grow shorter or dys-
functional that could lead to DNA 
damage response.

Telosome �consists of telomere-specific proteins 
involved in the protection of tel-
omere, preventing from degradation 
and activation of unwanted repair 
systems. Also named “the shelterin 
complex”, it plays a crucial role in 
replicative senescence and ageing-
related pathologies.
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