Clec’h C, Gonzalez F, Lautrette A, et al. Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Crit Care. 2011;15:R128.
Article
PubMed Central
PubMed
Google Scholar
Kidney Disease Improving Global Outcome KDIGO. Acute kidney injury work group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.
Article
Google Scholar
Poukkanen M, Koskenkari J, Vaara ST, et al. Variation in the use of renal replacement therapy in patients with septic shock: a substudy of the propsective multicenter observationnale FINNAKI study. Crit Care. 2014;18:R26.
Article
PubMed Central
PubMed
Google Scholar
Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490.
Article
PubMed
Google Scholar
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.
Article
PubMed Central
PubMed
Google Scholar
Fitch K, Bernstein S, Aguilar M, et al. The RAND/UCLA appropriateness method user’s manual. CA: Santa Monica; 2001.
Google Scholar
Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005;365:417–30.
Article
CAS
PubMed
Google Scholar
Karvellas CJ, Farhat MR, Sajjad I, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care. 2011;15:R72.
Article
PubMed Central
PubMed
Google Scholar
Bouman CSC, Oudemans-Van Straaten HM, Tijssen JGP, et al. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med. 2002;30:2205–11.
Article
PubMed
Google Scholar
Sugahara S, Suzuki H. Early start on continuous hemodialysis therapy improves survival rate in patients with acute renal failure following coronary bypass surgery. Hemodial Int. 2004;8:320–5.
Article
PubMed
Google Scholar
Payen D, Mateo J, Cavaillon JM, et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37:803–10.
Article
PubMed
Google Scholar
Liu KD, Himmelfarb J, Paganini E, et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2006;1:915–9.
Article
CAS
PubMed
Google Scholar
Bagshaw SM, George C, Gibney RTN, Bellomo R. A multi-center evaluation of early acute kidney injury in critically ill trauma patients. Ren Fail. 2008;30:581–9.
Article
PubMed
Google Scholar
Bagshaw SM, Uchino S, Bellomo R, et al. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J Crit Care. 2009;24:129–40.
Article
PubMed
Google Scholar
Gettings LG, Reynolds HN, Scalea T. Outcome in post-traumatic acute renal failure when continuous renal replacement therapy is applied early vs. late. Intensive Care Med. 1999;25:805–13.
Article
CAS
PubMed
Google Scholar
Elahi MM, Lim MY, Joseph RN, et al. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardio-Thorac Surg. 2004;26:1027–31.
Article
Google Scholar
Demirkiliç U, Kuralay E, Yenicesu M, et al. Timing of replacement therapy for acute renal failure after cardiac surgery. J Card Surg. 2004;19:17–20.
Article
PubMed
Google Scholar
Andrade L, Cleto S, Seguro AC. Door-to-dialysis time and daily hemodialysis in patients with leptospirosis: impact on mortality. Clin J Am Soc Nephrol. 2007;2:739–44.
Article
PubMed
Google Scholar
Wu V-C, Ko W-J, Chang H-W, et al. Early renal replacement therapy in patients with postoperative acute liver failure associated with acute renal failure: effect on postoperative outcomes. J Am Coll Surg. 2007;205:266–76.
Article
PubMed
Google Scholar
Manché A, Casha A, Rychter J, et al. Early dialysis in acute kidney injury after cardiac surgery. Interact CardioVasc Thorac Surg. 2008;7:829–32.
Article
PubMed
Google Scholar
Iyem H, Tavli M, Akcicek F, Büket S. Importance of early dialysis for acute renal failure after an open-heart surgery. Hemodial Int. 2009;13:55–61.
Article
PubMed
Google Scholar
Shiao C-C, Wu V-C, Li W-Y, et al. Late initiation of renal replacement therapy is associated with worse outcomes in acute kidney injury after major abdominal surgery. Crit Care. 2009;13:R171.
Article
PubMed Central
PubMed
Google Scholar
Carl DE, Grossman C, Behnke M, et al. Effect of timing of dialysis on mortality in critically ill, septic patients with acute renal failure. Hemodial Int. 2010;14:11–7.
Article
PubMed
Google Scholar
Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19:1394–9.
Article
PubMed
Google Scholar
Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771–6.
Article
PubMed
Google Scholar
Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67:653–8.
Article
PubMed
Google Scholar
Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24:394–400.
Article
PubMed
Google Scholar
Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55:316–25.
Article
PubMed
Google Scholar
Symons JM, Chua AN, Somers MJ, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2:732–8.
Article
PubMed
Google Scholar
Legrand M, Darmon M, Joannidis M, Payen D. Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med. 2013;39:101–8.
Article
PubMed
Google Scholar
Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.
Article
PubMed
Google Scholar
Palevsky PM, Zhang JH, O’Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.
Article
CAS
PubMed
Google Scholar
Clec’h C, Darmon M, Lautrette A, et al. Efficacy of renal replacement therapy in critically ill patients: a propensity analysis. Crit Care. 2012;16:R236.
O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52:e162–93.
Article
PubMed Central
PubMed
Google Scholar
Pannu N, James M, Hemmelgarn B, Klarenbach S. Association between AKI, recovery, of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol. 2013;8:194–202.
Article
PubMed Central
PubMed
Google Scholar
Coca S, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long term rosk of mortality and othe radverse outcomes after acute kidney injury: a systematic review and meta analysis. Am J Kidney Dis. 2009;53:961–73.
Article
PubMed Central
PubMed
Google Scholar
Souweine B, Traore O, Aublet-Cuvelier B, et al. Dialysis and central venous catheter infections in critically ill patients: results of a prospective study. Crit Care Med. 1999;27:2394–8.
Article
CAS
PubMed
Google Scholar
Souweine B, Liotier J, Heng AE, et al. Catheter colonization in acute renal failure patients: comparison of central venous and dialysis catheters. Am J Kidney Dis. 2006;47:879–87.
Article
PubMed
Google Scholar
Parienti JJ, du Cheyron D, Timsit JF, et al. Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med. 2012;40:1627–34.
Article
PubMed
Google Scholar
Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med. 2012;40:2479–85.
Article
PubMed
Google Scholar
Parienti JJ, Thirion M, Megarbane B, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299:2413–22.
Article
CAS
PubMed
Google Scholar
Dugué AE, Levesque SP, Fischer MO, et al. Vascular access sites for acute renal replacement in intensive care units. Clin J Am Soc Nephrol. 2012;7:70–7.
Article
PubMed Central
PubMed
Google Scholar
Parienti JJ, Megarbane B, Fischer MO, et al. Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med. 2010;38:1118–25.
Article
PubMed
Google Scholar
Leblanc M, Fedak S, Mokris G, Paganini EP. Blood recirculation in temporary central catheters for acute hemodialysis. Clin Nephrol. 1996;45:315–9.
CAS
PubMed
Google Scholar
Little MA, Conlon PJ, Walshe JJ. Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis. 2000;36:1135–9.
Article
CAS
PubMed
Google Scholar
Sutherland SM, Alexander SR. Continuous renal replacement therapy in children. Pediatr Nephrol. 2012;27:2007–16.
Article
PubMed
Google Scholar
Hackbarth R, Bunchman TE, Chua AN, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30:1116–21.
CAS
PubMed
Google Scholar
Merouani A, Flechelles O, Jouvet P. Acute kidney injury in children. Minerva Pediatr. 2012;64:121–33.
CAS
PubMed
Google Scholar
Depner TA. Catheter performance. Semin Dial. 2001;14:425–31.
Article
CAS
PubMed
Google Scholar
Little MA, Conlon PJ, Walshe JJ. Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis. 2000;36:1135–9.
Article
CAS
PubMed
Google Scholar
Hind D, Calvert N, McWilliams R, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327:361.
Article
PubMed Central
PubMed
Google Scholar
Recommendations from NICE. http://www.nice.org.uk.
CDC guidelines. Guidelines for the prevention of intravascular catheter-related infections. 2011. http://www.cdc.gov/hicpac/bsi/04-bsi-background-info-2011.html.
Rabindranath KS, Kumar E, Shail R, Vaux E. Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis. 2011;58:964–70.
Article
PubMed
Google Scholar
Bansal R, Agarwal SK, Tiwari SC, Dash SC. A prospective randomized study to compare ultrasound-guided with nonultrasound-guided double lumen internal jugular catheter insertion as a temporary hemodialysis access. Ren Fail. 2005;27:561–4.
Article
PubMed
Google Scholar
Koroglu M, Demir M, Koroglu BK. Percutaneous placement of central venous catheters: comparing the anatomical landmark method with the radiologically guided technique for central venous catheterization through the internal jugular vein in emergent hemodialysis patients. Acta Radiol. 2006;47:43–7.
Article
CAS
PubMed
Google Scholar
Nadig C, Leidig M, Schmiedeke T, Höffken B. The use of ultrasound for the placement of dialysis catheters. Nephrol Dial Transplant. 1998;13:978–81.
Article
CAS
PubMed
Google Scholar
Prabhu MV, Juneja D, Gopal PB, et al. Ultrasound-guided femoral dialysis access placement: a single-center randomized trial. Clin J Am Soc Nephrol. 2010;5:235–9.
Article
PubMed Central
PubMed
Google Scholar
Vazquez MA. Vascular access for dialysis: recent lessons and new insights. Curr Opin Nephrol Hypertens. 2009;18:116–21.
Article
PubMed
Google Scholar
Albright RC Jr, Smelser JM, McCarthy JT, Homburger HA, Bergstralh EJ, Larson TS. Patient survival and renal recovery in acute renal failure: randomized comparison of cellulose acetate and polysulfone membrane dialyzers. Mayo Clin Proc. 2000;75:1141–7.
Article
PubMed
Google Scholar
Gastaldello K, Melot C, Kahn RJ, Vanherweghem JL, Vincent JL, Tielemans C. Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol Dial Transplant. 2000;15:224–30.
Article
CAS
PubMed
Google Scholar
Himmelfarb J, Tolkoff Rubin N, Chandran P, Parker RA, Wingard RL, Hakim R. A multicenter comparison of dialysis membranes in the treatment of acute renal failure requiring dialysis. J Am Soc Nephrol. 1998;9:257–66.
CAS
PubMed
Google Scholar
Jones CH, Goutcher E, Newstead CG, Will EJ, Dean SG, Davison AM. Hemodynamics and survival of patients with acute renal failure treated by continuous dialysis with two synthetic membranes. Artif Organs. 1998;22:638–43.
Article
CAS
PubMed
Google Scholar
Jörres A, Gahl GM, Dobis C, et al. Haemodialysis-membrane biocompatibility and mortality of patients with dialysis-dependent acute renal failure: a prospective randomised multicentre trial. International Multicentre Study Group. Lancet. 1999;354:1337–41.
Article
PubMed
Google Scholar
Kurtal H, von Herrath D, Schaefer K. Is the choice of membrane important for patients with acute renal failure requiring hemodialysis? Artif Organs. 1995;19:391–4.
Article
CAS
PubMed
Google Scholar
Ponikvar JB, Rus RR, Kenda RB, Bren AF, Ponikvar RR. Low-flux versus high-flux synthetic dialysis membrane in acute renal failure: prospective randomized study. Artif Organs. 2001;25(12):946–50.
Article
CAS
PubMed
Google Scholar
Romão JE Jr, Abensur H, de Castro MC, Ianhez LE, Massola VC, Sabbaga E. Effect of dialyser biocompatibility on recovery from acute renal failure after cadaver renal transplantation. Nephrol Dial Transplant. 1999;14:709–12.
Article
PubMed
Google Scholar
Schiffl H, Lang SM, König A, Strasser T, Haider MC, Held E. Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet. 1994;344:570–2.
Article
CAS
PubMed
Google Scholar
Valeri A, Radhakrishnan J, Ryan R, Powell D. Biocompatible dialysis membranes and acute renal failure: a study in post-operative acute tubular necrosis in cadaveric renal transplant recipients. Clin Nephrol. 1996;46:402–9.
CAS
PubMed
Google Scholar
Woo YM, Craig AM, King BB, et al. Biocompatible membranes do not promote graft recovery following cadaveric renal transplantation. Clin Nephrol. 2002;57:38–44.
Article
CAS
PubMed
Google Scholar
Hutchison CA, Heyne N, Airia P, et al. Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol Dial Transplant. 2012;27:3823–8.
Article
CAS
PubMed
Google Scholar
Morgera S, Haase M, Kuss T, et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006;34:2099–104.
Article
CAS
PubMed
Google Scholar
Alonso A, Lau J, Jaber BL. Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst Rev. 2008.
Subramanian S, Venkataraman R, Kellum JA. Influence of dialysis membranes on outcomes in acute renal failure: a meta-analysis. Kidney Int. 2002;62:1819–23.
Article
CAS
PubMed
Google Scholar
Jaber BL, Lau J, Schmid CH, Karsou SA, Levey AS, Pereira BJ. Effect of biocompatibility of hemodialysis membranes on mortality in acute renal failure: a meta-analysis. Clin Nephrol. 2002;57:274–82.
Article
CAS
PubMed
Google Scholar
Brunet P, Frances J, Vacher-Coponat H, et al. Hemodialysis without heparin: a randomized, controlled, crossover study of two dialysis membranes (AN69ST and polysulfone F60). Int J Artif Organs. 2011;34:1165–71.
Article
CAS
PubMed
Google Scholar
Evenepoel P, Dejagere T, Verhamme P, et al. Heparin-coated polyacrylonitrile membrane versus regional citrate anticoagulation: a prospective randomized study of 2 anticoagulation strategies in patients at risk of bleeding. Am J Kidney Dis. 2007;49:642–9.
Article
CAS
PubMed
Google Scholar
Sánchez-Canel JJ, Pons-Prades R, Salvetti ML, et al. Evaluation of coagulation and anti-Xa factor when using a heparin-coated AN69ST® dialyser. Nefrologia. 2012;32:605–12.
PubMed
Google Scholar
Schetz M, Van Cromphaut S, Dubois J, Van den Berghe G. Does the surface-treated AN69 membrane prolong filter survival in CRRT without anticoagulation? Intensive Care Med. 2012;38:1818–25.
Article
CAS
PubMed
Google Scholar
Van der Voort PH, Postma SR, Kingma WP, Boerma EC, Van Roon EN. Safety of citrate based hemofiltration in critically ill patients at high risk for bleeding: a comparison with nadroparin. Int J Artif Organs. 2006;29:559–63.
PubMed
Google Scholar
Thoenen M, Schmid ER, Binswanger U, Schuepbach R, Aerne D, Schmidlin D. Regional citrate anticoagulation using a citrate-based substitution solution for continuous venovenous hemofiltration in cardiac surgery patients. Wien Klin Wochenschr. 2002;114:108–14.
CAS
PubMed
Google Scholar
Mariano F, Tedeschi L, Morselli M, Stella M, Triolo G. Normal citratemia and metabolic tolerance of citrate anticoagulation for hemodiafiltration in severe septic shock burn patients. Intensive Care Med. 2010;36:1735–43.
Article
CAS
PubMed
Google Scholar
Betjes MG, van Oosterom D, van Agteren M, van de Wetering J. Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol. 2007;20:602–8.
CAS
PubMed
Google Scholar
Fealy N, Baldwin I, Johnstone M, Egi M, Bellomo R. A pilot randomized controlled crossover study comparing regional heparinization to regional citrate anticoagulation for continuous venovenous hemofiltration. Int J Artif Organs. 2007;30:301–7.
CAS
PubMed
Google Scholar
Kutsogiannis DJ, Gibney RT, Stollery D, Gao J. Regional citrate versus systemic heparin anticoagulation for continuous renal replacement in critically ill patients. Kidney Int. 2005;67:2361–7.
Article
CAS
PubMed
Google Scholar
Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30:260–5.
Article
PubMed
Google Scholar
Oudemans-van Straaten HM, Bosman RJ, Koopmans M, et al. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–52.
Article
CAS
PubMed
Google Scholar
Carr JA, Silverman N. The heparin-protamine interaction. A review. J Cardiovasc Surg (Torino). 1999;40:659–66.
CAS
Google Scholar
Bunchman TE, Maxvold NJ, Barnett J, Hutchings A, Benfield MR. Pediatric hemofiltration: normocarb dialysate solution with citrate anticoagulation. Pediatr Nephrol. 2002;17:150–4.
Article
PubMed
Google Scholar
Bunchman TE, Maxvold NJ, Brophy PD. Pediatric convective hemofiltration: normocarb replacement fluid and citrate anticoagulation. Am J Kidney Dis. 2003;42:1248–52.
Article
PubMed
Google Scholar
Elhanan N, Skippen P, Nuthall G, Krahn G, Seear M. Citrate anticoagulation in pediatric continuous venovenous hemofiltration. Pediatr Nephrol. 2004;19:208–12.
Article
PubMed
Google Scholar
Brophy PD, Somers MJ, Baum MA, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20:1416–21.
Article
PubMed
Google Scholar
Chadha V, Garg U, Warady BA, Alon US. Citrate clearance in children receiving continuous venovenous renal replacement therapy. Pediatr Nephrol. 2002;17:819–24.
Article
PubMed
Google Scholar
Soltysiak J, Warzywoda A, Kociński B, et al. Citrate anticoagulation for continuous renal replacement therapy in small children. Pediatr Nephrol. 2014;29:469–75.
Article
PubMed Central
PubMed
Google Scholar
Symons JM, Chua AN, Somers MJ, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2:732–8.
Article
PubMed
Google Scholar
Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol. 2004;15:3192–206.
Article
PubMed
Google Scholar
Bagshaw SM, Laupland KB, Boiteau PJ, Godinez-Luna T. Is regional citrate superior to systemic heparin anticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J Crit Care. 2005;20:155–61.
Article
CAS
PubMed
Google Scholar
Balik M, Waldauf P, Plasil P, Pachl J. Prostacyclin versus citrate in continuous haemodiafiltration: an observational study in patients with high risk of bleeding. Blood Purif. 2005;23:325–9.
Article
CAS
PubMed
Google Scholar
Gabutti L, Marone C, Colucci G, Duchini F, Schonholzer C. Citrate anticoagulation in continuous venovenous hemodiafiltration: a metabolic challenge. Intensive Care Med. 2002;28:1419–25.
Article
PubMed
Google Scholar
Hetzel GR, Schmitz M, Wissing H, et al. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant. 2011;26:232–9.
Article
CAS
PubMed
Google Scholar
Morabito S, Pistolesi V, Tritapepe L, et al. Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16:R111.
Article
PubMed Central
PubMed
Google Scholar
Wu MY, Hsu YH, Bai CH, Lin YF, Wu CH, Tam KW. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;59:810–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Med. 2012;38:20–8.
Article
PubMed
CAS
Google Scholar
Aman J, Nurmohamed SA, Vervloet MG, Groeneveld AB. Metabolic effects of citrate- vs bicarbonate-based substitution fluid in continuous venovenous hemofiltration: a prospective sequential cohort study. J Crit Care. 2010;25:120–7.
Article
CAS
PubMed
Google Scholar
Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med. 2008;36:610–7.
Article
PubMed
Google Scholar
Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev Online. 2007:CD003773.
Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–63.
Article
CAS
PubMed
Google Scholar
Vinsonneau C, Camus C, Combes A, et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet. 2006;368:379–85.
Article
PubMed
Google Scholar
Lins RL, Elseviers MM, Van der Niepen P, et al. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc. 2009;24:512–8.
Article
Google Scholar
Noble JSC, Simpson K, Allison MEM. Long-term quality of life and hospital mortality in patients treated with intermittent or continuous hemodialysis for acute renal and respiratory failure. Ren Fail. 2006;28:323–30.
Article
PubMed
Google Scholar
Uehlinger DE, Jakob SM, Ferrari P, et al. Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc. 2005;20:1630–7.
Article
Google Scholar
Augustine JJ, Sandy D, Seifert TH, Paganini EP. A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis. 2004;44:1000–7.
Article
PubMed
Google Scholar
John S, Griesbach D, Baumgärtel M, et al. Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transplant. 2001;16:320–7.
Article
CAS
PubMed
Google Scholar
Misset B, Timsit JF, Chevret S, et al. A randomized cross-over comparison of the hemodynamic response to intermittent hemodialysis and continuous hemofiltration in ICU patients with acute renal failure. Intensive Care Med. 1996;22:742–6.
Article
CAS
PubMed
Google Scholar
Bell M, Granath F, Schön S, et al. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007;33:773–80.
Article
PubMed
Google Scholar
Schneider AG, Bellomo R, Bagshaw SM, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39:987–97.
Article
CAS
PubMed
Google Scholar
Ronco C, Bellomo R, Brendolan A, Pinna V, La Greca G. Brain density changes during renal replacement in critically ill patients with acute renal failure. Continuous hemofiltration versus intermittent hemodialysis. J Nephrol. 1999;12:173–8.
CAS
PubMed
Google Scholar
Walters RJ, Fox NC, Crum WR, Taube D, Thomas DJ. Haemodialysis and cerebral oedema. Nephron. 2001;87:143–7.
Article
CAS
PubMed
Google Scholar
Lin CM, Lin JW, Tsai JT, Ko CP, Hung KS, Hung CC, Su YK, Wei L, Chiu WT, Lee LM. Intracranial pressure fluctuation during hemodialysis in renal failure patients with intracranial hemorrhage. Acta Neurochir Suppl. 2008;101:141–4.
Article
CAS
PubMed
Google Scholar
Bhattacharya M, Dhingra D, Mantan M, Upare S, Sethi GR. Acute renal failure in children in a tertiary care center. Saudi J Kidney Transpl. 2013;24:413–7.
Article
Google Scholar
Chan KL, Ip P, Chiu CS, Cheung YF. Peritoneal dialysis after surgery for congenital heart disease in infants and young children. Ann Thorac Surg. 2003;76:1443–9.
Article
PubMed
Google Scholar
Golej J, Kitzmueller E, Hermon M, Boigner H, Burda G, Trittenwein G. Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr. 2002;161:385–9.
Article
PubMed
Google Scholar
Madenci AL, Thiagarajan RR, Stoffan AP, Emani SM, Rajagopal SK, Weldon CB. Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg. 2012;146:334–8.
Article
PubMed
Google Scholar
Yu JE, Park MS, Pai KS. Acute peritoneal dialysis in very low birth weight neonates using a vascular catheter. Pediatr Nephrol. 2010;25:367–71.
Article
PubMed
Google Scholar
Boigner H, Brannath W, Hermon M, et al. Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann Thorac Surg. 2004;77:61–5.
Article
PubMed
Google Scholar
Duzova A, Bakkaloglu A, Kalyoncu M, et al. Etiology and outcome of acute kidney injury in children. Pediatr Nephrol. 2010;25:1453–61.
Article
PubMed
Google Scholar
McNiece KL, Ellis EE, Drummond-Webb JJ, Fontenot EE, O’Grady CM, Blaszak RT. Adequacy of peritoneal dialysis in children following cardiopulmonary bypass surgery. Pediatr Nephrol. 2004;20:972–6.
Article
Google Scholar
Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol. 2000;15:11–3.
Article
CAS
PubMed
Google Scholar
Mel E, Davidovits M, Dagan O. Long-term follow-up evaluation of renal function in patients treated with peritoneal dialysis after cardiac surgery for correction of congenital anomalies. J Thorac Cardiovasc Surg. 2014;147:451–5.
Article
PubMed
Google Scholar
Oh G, Lau KK. Characteristics of children with sporadic hemolytic uremic syndrome in a single Northern California center. Int Urol Nephrol. 2012;44:1467–72.
Article
PubMed
Google Scholar
Fleming F, Bohn D, Edwards H. Renal replacement therapy after repair of congenital heart disease in children. A comparison of hemofiltration and peritoneal dialysis. J Thorac Cardiovasc Surg. 1995;109:322–31.
Article
CAS
PubMed
Google Scholar
Bunchman TE, McBryde KD, Mottes TE, Gardner JJ, Maxvold NJ, Brophy PD. Pediatric acute renal failure: outcome by modality and disease. Pediatr Nephrol. 2001;16:1067–71.
Article
CAS
PubMed
Google Scholar
Krause I, Herman N, Cleper R, Fraser A, Davidovits M. Impact of dialysis type on outcome of acute renal failure in children: a single-center experience. Isr Med Assoc J. 2011;13:153–6.
PubMed
Google Scholar
Phu NH, Hien TT, Mai NT, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med. 2002;347:895–902.
Article
PubMed
Google Scholar
George J, Varma S, Kumar S, Thomas J, Gopi S, Pisharody R. Comparing continuous venovenous hemodiafiltration and peritoneal dialysis in critically ill patients with acute kidney injury: a pilot study. Perit Dial Int. 2011;31:422–9.
Article
PubMed
Google Scholar
Gabriel DP, Caramori JT, Martin LC, Baretti P, Al Balbi. Continuous peritoneal dialysis compared with daily hemodialysis in patients with acute kidney injury. Perit Dial Int. 2009;29(Suppl 2):S62–71.
CAS
PubMed
Google Scholar
Faulhaber-Walter R, Hafer C, Jahr N, et al. The Hannover dialysis outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant. 2009;24:2179–86.
Article
PubMed
Google Scholar
Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med. 2002;346:305–10.
Article
PubMed
Google Scholar
Paganini E, Tapolyai M, Goormastic M, et al. Establishing a dialysis therapy/patient outcome link in intensive care unit acute dialysis for patients with acute renal failure. Am J Kidney Dis. 1996;28:S81–9.
Article
Google Scholar
Ronco C, Bellomo R, Homet P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomized trail. Lancet. 2000;356:26–30.
Article
CAS
PubMed
Google Scholar
Saudan P, Niederberger M, De Seigneux S, et al. Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int. 2006;70:1312–7.
Article
CAS
PubMed
Google Scholar
Palevsky PM, O’Connor T, Zhang JH, Star RA, Smith MW. Design of the VA/NIH acute renal failure trial network (ATN) study: intensive versus conventional renal support in acute renal failure. Clin Trials. 2005;2:423–35.
Article
PubMed Central
PubMed
Google Scholar
Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, McArthur C, McGuinness S, Myburgh J, Norton R, Scheinkestel C, Su S, RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.
Article
PubMed
Google Scholar
Pichette V, Leblanc M, Bonnardeaux A, et al. High dialysate flow rate continuous arteriovenous hemodialysis: a new approach for the treatment of acute renal failure and tumor lysis syndrome. Am J Kidney Dis. 1994;23:591–6.
Article
CAS
PubMed
Google Scholar
Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant. 2011;26:3508–14.
Article
CAS
PubMed
Google Scholar
Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.
Article
PubMed
Google Scholar
Bogard KN, Peterson NT, Plumb TJ, et al. Antibiotic dosing during sustained low-efficiency dialysis: special considerations in adult critically ill patients. Crit Care Med. 2011;39:560–70.
Article
CAS
PubMed
Google Scholar
Schetz M. Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care. 2007;13:645–51.
Article
PubMed
Google Scholar
Eloot S, Van Biesen W, Dhondt A, et al. Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int. 2008;73:765–70.
Article
CAS
PubMed
Google Scholar
Eloot S, van Biesen W, Dhondt A, et al. Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant. 2009;24:2225–32.
Article
CAS
PubMed
Google Scholar
Augustine JJ, Sandy D, Seifert TH, Paganini EP. A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis. 2004;44:1000–7.
Article
PubMed
Google Scholar
Bouchard J, Soroko SB, Chertow GM, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76:422–7.
Article
PubMed
Google Scholar
De Vriese AS, Colardyn FA, Philippé JJ, et al. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999;10:846–53.
PubMed
Google Scholar
Honore PM, Jamez J, Wauthier M, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28:3581–7.
Article
CAS
PubMed
Google Scholar
Boussekey N, Chiche A, Faure K, et al. A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock. Intensive Care Med. 2008;34:1646–53.
Article
CAS
PubMed
Google Scholar
Zhang P, Yang Y, Lv R, Zhang Y, Xie W, Chen J. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial. Nephrol Dial Transplant. 2012;27:967–73.
Article
CAS
PubMed
Google Scholar
Joannes-Boyau O, Honore PM, Perez P, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:1535–46.
Article
PubMed
Google Scholar
Borthwick EM, Hill CJ, Rabindranath KS, et al. High-volume haemofiltration for sepsis. Cochrane Database Syst Rev. 2013;1:CD008075.
Kumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36:294–300.
Article
CAS
PubMed
Google Scholar
Marshall MR, Golper TA, Shaver MJ, Alam MG, Chatoth DK. Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int. 2001;60:777–85.
Article
CAS
PubMed
Google Scholar
Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, Fliser D. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis. 2004;43:342–9.
Article
CAS
PubMed
Google Scholar
Selby NM, Mac Intyre CW. A systematic review of the clinical effect of reducing dialysate fluid temperature. Nephro Dial Transplant. 2006;21:1883–98.
Article
Google Scholar
Vincent JL, Vanherweghem JL, Degaute JP, Berre J, Dufaye P, Kahn RJ. Acetate-induced myocardial depression during hemodialysis for acute renal failure. Kidney Int. 1982;22:653–7.
Article
CAS
PubMed
Google Scholar
Paganini EP, Sandy D, Moreno L, Kozlowski L, Sakai K. The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic stability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant. 1996;11(Suppl 8):32–7.
Article
PubMed
Google Scholar
Schortgen F, Soubrier N, Delclaux C, et al. Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med. 2000;162:197–202.
Article
CAS
PubMed
Google Scholar
Journois D, Schortgen F. Sécurisation des procédures d’épuration extrarénale. Réanimation. 2008;17:557–65.
Article
Google Scholar
Graham P, Lischer E. Nursing issues in renal replacement therapy: organization, manpower assessment, competency evaluation and quality improvement processes. Semin Dial. 2011;24:183–7.
Article
PubMed
Google Scholar
Boussely F, Bourgeon-Ghittori I, Schortgen F. Epuration extrarénale: Organisation de la formation des équipes médicales et paramédicales—38e Congrès de la Société de réanimation de langue française. Elsevier Masson SAS; 2010.
Clabault K, Richard J, Soulis F, Hauchard I, Bonmarchand G. Impact des recommandations de bonne pratique sur la tolérance hémodynamique de l’hémodialyse intermittente en réanimation Reanimation. 2006;15:SP160.
Blackwood B, Alderdice F, Burns K, Cardwell C, Lavery G, O’Halloran P. Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: cochrane systematic review and meta-analysis. BMJ. 2011;342:c7237.
Article
PubMed Central
PubMed
Google Scholar
Wall RJ, Dittus RS, Ely EW. Protocol-driven care in the intensive care unit: a tool for quality. Crit Care. 2001;5:283–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baldwin I, Fealy N. Nursing for renal replacement therapies in the Intensive Care Unit: historical, educational, and protocol review. Blood Purif. 2009;27:174–81.
Article
PubMed
Google Scholar
Bellomo R, Cole L, Reeves J, Silvester W. Renal replacement therapy in the ICU: the Australian experience. Am J Kidney Dis. 1997;30:S80–3.
Article
CAS
PubMed
Google Scholar
Dandy WE Jr, Sapir DG. Acute renal failure. Community hospital experience with hemodialysis as intensive care adjunct. Crit Care Med. 1977;5:146–9.
Article
PubMed
Google Scholar
De Becker W. Starting up a continuous renal replacement therapy program on ICU. Contrib Nephrol. 2007;156:185–90.
Article
PubMed
Google Scholar
Martin RK. Who should manage CRRT in the ICU? The nursing viewpoint. Am J Kidney Dis. 1997;30:S105–8.
Article
CAS
PubMed
Google Scholar
Jones SL, Devonald MA. How acute kidney injury is investigated and managed in UK intensive care units–a survey of current practice. Nephrol Dial Transplant. 2013;28:1186–90.
Article
PubMed
Google Scholar
SFHH. Bonnes pratiques d’hygiène en hémodialyse. Hygiènes XIII. 2005.
Nguyen YL, Milbrandt EB, Weissfeld LA, et al. Intensive care unit renal support therapy volume is not associated with patient outcome. Crit Care Med. 2011;39:2470–7.
Article
PubMed
Google Scholar
Harb A, Estphan G, Nitenberg G, Chachaty E, Raynard B, Blot F. Indwelling time and risk of infection of dialysis catheters in critically ill cancer patients. Intensive Care Med. 2005;31:812–7.
Article
PubMed
Google Scholar
Hryszko T, Brzosko S, Mazerska M, Malyszko J, Mysliwiec M. Risk factors of nontunneled noncuffed hemodialysis catheter malfunction. A prospective study. Nephron Clin Pract. 2004;96:c43–7.
Article
PubMed
Google Scholar
Morgan D, Ho K, Murray C, Davies H, Louw J. A randomized trial of catheters of different lengths to achieve right atrium versus superior vena cava placement for continuous renal replacement therapy. Am J Kidney Dis. 2012;60:272–9.
Article
PubMed
Google Scholar
Canaud B, Desmeules S, Klouche K, Leray-Moragués H, Béraud JJ. Vascular access for dialysis in the intensive care unit. Best Pract Res Clin Anaesthesiol. 2004;18:159–74.
Article
PubMed
Google Scholar
Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M. Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis. 2008;47:83–93.
Article
PubMed
Google Scholar
Heng AE, Abdelkader MH, Diaconita M, et al. Impact of short term use of interdialytic 60% ethanol lock solution on tunneled silicone catheter dysfunction. Clin Nephrol. 2011;75:534–41.
Article
PubMed
Google Scholar
Hemmelgarn BR, Moist LM, Lok CE, et al. Prevention of Dialysis Catheter Lumen Occlusion with rt-PA versus Heparin Study Group. Prevention of dialysis catheter malfunction with recombinant tissue plasminogen activator. N Engl J Med. 2011;364:303–12.
Article
CAS
PubMed
Google Scholar
Hermite L, Quenot JP, Nadji A, et al. Sodium citrate versus saline catheter locks for non-tunneled hemodialysis central venous catheters in critically ill adults: a randomized controlled trial. Intensive Care Med. 2012;38:279–85.
Article
CAS
PubMed
Google Scholar