This paper reports on the implementation of a VAP bundle in Belgium. It was indeed expected in 2012 by the federal authorities to at least halve the VAP incidence encountered in Belgium. According to Fig. 2, this seems to have been reached and even exceeded, since the prevalence of VAP, as estimated by the surveys, was as high as 28% of the ventilated patients in 2010, reached 11.3% in 2014 and was maintained at this level for the next 2 years. It does not correspond to prevalence levels reported in the USA, but it corresponds to the best levels reported in European centers where VAP bundles are implemented [3, 4].
There is no clear consensus about what a VAP bundle should be [9, 10]. The first VAP bundle from the IHI includes elements which were not directly linked to the management of the airway (prevention of both thromboembolism and digestive hemorrhage) [11]. European experts proposed in 2010 only two procedures in addition to general measures such as hand hygiene, staff education and nonventilatory circuit change: control of sedation with protocol of weaning and oral care with chlorhexidine [12]. The Belgian VAP bundle [8] includes these two procedures into 4 components (sedation protocol, control of cuff pressure, oral disinfection, head of bed elevation) which were also parts of bundles recently published with reported efficacy [3, 4]. It also promotes a fifth procedure: subglottic suctioning which seems to have become the most useful procedure for the prevention of VAP [13,14,15].
The most striking difference between surveys appeared to be the percentage of ventilated patients and the duration of ventilation from the ICU admission till the day of the survey. Although this latter parameter was not the true duration of ventilation, it reflects a reality which means that from year to year, at one point in the year, fewer patients were ventilated and especially for less time in Belgian ICUs. Of course, this reduction of duration of ventilation reduces the risk for occurrence of VAP, estimated by these 1-day prevalence surveys. It would have been worth correlating this reduction of ventilation to a change in sedation procedures, which, unfortunately, were not directly assessed by the surveys. It may however be inferred that the campaign had an impact because of the clear difference between the duration before and after it.
After the campaign, the compliance with head of bed elevation and control of cuff pressure increased significantly and exceeded 90%. Oral disinfection also improved. The type of antiseptic varied largely, but the rate of application increased: It was done at least 3 times a day in 79.2% in 2010 and in 94.8% in 2016 (p < 0.0001). Chlorhexidine concentration of 1 or 2% was more often used after the campaign, but the low concentration of 0.2% was still used in 50% in 2016. The type and the concentration of antiseptic remain a matter of debate. Chlorhexidine has been shown as effective with concentration as high as 2% in a well-conducted multicenter study in the Netherlands by Koeman in 2006 [16]. Chlorhexidine has been, however, reported to be sometimes not well tolerated by the patients [17]. More worrying is that an increase in mortality in patients receiving chlorhexidine as part of oral disinfection was recently reported by Komplas [18] although this agent is used worldwide [19]. The merit of polyvidone iodine in oral disinfection is supported by very few studies [19], although it remains used in Belgium in one-third of the patients. Regarding dental brushing, it is surprising that as many as 17.1% of patients did not benefit from this care in 2016. They were already 21.5% in 2010, though dental brushing is the only way to eliminate or reduce the dental plaque which can contain a lot of pathogenic bacteria [20]. However, even if dental brushing has been shown to reduce the rate of pneumonia in postoperative patients [21], this was curiously not yet confirmed for VAP in ventilated ICU patients [22]. Subglottic suctioning, which was promoted, remains used in Belgium in a minority of patients. This could be due to the cost of the endotracheal tube which is on average 10 times higher than conventional tubes in Belgium. However, this procedure should still be encouraged because of its efficacy reported as high as 50% reduction of VAP incidence [15].
Thus, the VAP bundle was rather correctly followed and VAP incidence decreased. Was there a clear causal relationship between these two facts? These surveys cannot ascertain that statement, but they were carried out to control the expected impact on VAP prevalence. But the question remains of the reality of this impact, especially because the effect was seen only in 2014, 2015 and 2016, while the campaign was conducted in 2012. All the improvements seen in the application of VAP bundle were, however, already obtained in 2013. Why did the reduction in VAP prevalence not occur in 2013? In fact, this question is not anecdotic, because there may have been a change in the way the VAP was diagnosed and the reduction seen in 2013 onward could be due to this change. As said by Komplas, “an apparent decrease in VAP rate could be achieved by maximally exploiting the subjectivity and inconstancies of VAP definitions” [23]. In our opinion, it was not the case, because the way of diagnosing VAP remains the same, based on radiological findings, the occurrence of fever, change in leukocytosis and bacteriological results. The surveys were answered on a voluntary basis, and there were no reasons to minimize the VAP prevalence at any time. Most medical teams were the same during the surveys. An indirect evidence of the reality in the reduction of VAP prevalence was the corresponding decrease in associated bacteremia, the rate relating to the number of VAP being stable. That means that the same type of infections was taken into account during the surveys. However, Komplas’ concern regarding the data manipulation, even if unconscious, may still be real.
This report is not a true study such as the one recently published about the Spanish experience [24]. It is only a presentation of several surveys supporting the implementation of a VAP bundle in ICU ventilated patients. It gives figures from a large number of ICUs, allowing to describe the average activity of intensive care in Belgium and to encourage Belgian teams to prevent the occurrence of VAP by all valuable means. It is indeed interesting to observe the steady decline in number of ventilated patients in Belgian ICUs and duration of ventilation over time. Data quality may be, however, questioned because data could not be controlled, but remained consistent over time.