Goode HF, Webster NR. Free radicals and antioxidants in sepsis. Crit Care Med. 1993;21(11):1770.
Article
CAS
Google Scholar
Wu F, Schuster DP, Tyml K, et al. Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med. 2007;42(1):124–31.
Article
CAS
Google Scholar
Yu-Lei G, Bin L, Jian-Hua Z, et al. The parenteral vitamin c improves sepsis and sepsis-induced multiple organ dysfunction syndrome via preventing cellular immunosuppression. Mediators Inflamm. 2017;2017:1–12.
Google Scholar
Long CL, Maull KI, Krishnan RS, et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res. 2003;109(2):144–8.
Article
CAS
Google Scholar
Schorah CJ, Downing C, Piripitsi A, et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr. 1996;63(5):760–5.
Article
CAS
Google Scholar
Hunt C, Chakravorty NK, Annan G, et al. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int J Vitam Nutr Res. 1994;64(3):212–9.
CAS
PubMed
Google Scholar
Borrelli E, Rouxlombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med. 1996;24(3):392–7.
Article
CAS
Google Scholar
John A, Karel T, Darcy L, et al. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat [J]. J Appl Physiol. 2001;90(3):795–803.
Article
Google Scholar
Matsuda T, Tanaka H, Yuasa H, et al. The effects of high-dose vitamin C therapy on post burn lipid peroxidation. J Burn Care Rehabil. 1993;14(6):624–9.
Article
CAS
Google Scholar
Matsuda T, Tanaka H, Reyes HM, et al. Antioxidant therapy using high dose vitamin C: reduction of post burn resuscitation fluid volume requirements. World J Surg. 1995;19(2):287–91.
Article
CAS
Google Scholar
Fisher BJ, Seropian IM, Kraskauskas D, et al. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury*. Crit Care Med. 2011;39(6):1454–60.
Article
CAS
Google Scholar
May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium [J]. Antioxid Redox Signal. 2013;19(17):2068–83.
Article
CAS
Google Scholar
Carr AC, Shaw GM, Fowler AA, et al. Ascorbate-dependent vasopressor synthesis: a rationale for Vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19(1):418.
Article
Google Scholar
Ferrón-Celma I, Mansilla A, Hassan L, et al. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J Surg Res. 2009;153(2):224–30.
Article
Google Scholar
Fowler AA, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12(1):32.
Article
Google Scholar
Zabet MH, Mohammadi M, Ramezani M, et al. Effect of high-dose ascorbic acid on vasopressor’s requirement in septic shock. J Res Pharm Pract. 2016;5(2):94–100.
Article
CAS
Google Scholar
Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res. 2011;32(1):110–7.
Article
Google Scholar
Tanaka H, Matsuda T, Miyagantani Y, et al. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg. 2000;135(3):326–31.
Article
CAS
Google Scholar
Lin J, Falwell S, Greenhalgh D, et al. High-dose ascorbic acid for burn shock resuscitation may not improve outcomes. J Burn Care Res. 2017;39(5):708–12.
Article
Google Scholar
Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, Vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2016;151(6):1229–38.
Article
Google Scholar
Razmkon A, Sadidi A, Sherafat-Kazemzadeh E, et al. Administration of vitamin C and vitamin E in severe head injury: a randomized double-blind controlled trial. Clin Neurosurg. 2011;58:133–7.
Article
Google Scholar
Sandesc M, Rogobete AF, Bedreag OH, et al. Analysis of oxidative stress-related markers in critically ill polytrauma patients: An observational prospective single-center study. Bosn J Basic Med Sci. 2018;10:15–20. https://doi.org/10.17305/bjbms.2018.2306.
Article
Google Scholar
Palli E, Makris D, Papanikolaou J, et al. The impact of N-acetylcysteine and ascorbic acid in contrast-induced nephropathy in critical care patients: an open-label randomized controlled study[J]. Crit Care. 2017;21(1):269.
Article
Google Scholar
Galley HF, Howdle PD, Walker BE, et al. The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med. 1997;23(5):768–74.
Article
CAS
Google Scholar
PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses (PRISMA).http://prisma-statement.org. Accessed 8 Sept 2018.
Higgins J, Green S (eds). Cochrane handbook for systematic reviews of interventions version 5.1.0. March 2011.https://handbook-5-1.cochrane.org. Accessed 8 Sept 2018.
Higgins JPT, Altman DG, Gotzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomized trials. Br Med J. 2011;343:d5928.
Article
Google Scholar
Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Br Med J. 2016;355:i4919.
Article
Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.
Article
Google Scholar
Barbosa E, Faintuch J, Moreira EAM, et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study. J Burn Care Res Off Publ Am Burn Assoc. 2009;30(5):859.
Article
Google Scholar
Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21(1):300.
Article
Google Scholar
Nogueira CR, Borges F, Lameu E, et al. Effects of supplementation of antioxidant vitamins and lipid peroxidation in critically ill patients. Nutr Hosp. 2013;28(28):1666–72.
CAS
PubMed
Google Scholar
Preiser JC, Van Gossum A, Berré J, et al. Enteral feeding with a solution enriched with antioxidant vitamins A, C, and E enhances the resistance to oxidative stress. Crit Care Med. 2000;28(12):3828–32.
Article
CAS
Google Scholar
Heyland D, Heyland D. Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med. 2008;36(1):131–44.
Article
Google Scholar
Howe KP, Clochesy JM, Goldstein LS, et al. Mechanical ventilation antioxidant trial. Am J Crit Care. 2015;10:15–20. https://doi.org/10.4037/ajcc2015335.
Article
Google Scholar
Surgery AO. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–22.
Article
Google Scholar
Giladi AM, Dossett LA, Fleming SB, et al. High-dose antioxidant administration is associated with a reduction in post-injury complications in critically ill trauma patients. Injury. 2011;42(1):78–82.
Article
Google Scholar
Theilla M, Singer P, Cohen J, et al. A diet enriched in eicosapentanoic acid, gamma-linolenic acid and antioxidants in the prevention of new pressure ulcer formation in critically ill patients with acute lung injury: a randomized, prospective, controlled study. Clin Nutr. 2007;26(6):752–7.
Article
CAS
Google Scholar
Crimi E, Liguori A, Condorelli M, Cioffi M, Astuto M, Bontempo P, Pignalosa O, Vietri MT, Molinari AM, Sica V, Della Corte F. NapoliC: the beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg. 2004;99:857–63.
Article
CAS
Google Scholar
Mirhoseini MF, Hamblin SE, Moore WP, Pouliot J, Jenkins JM, Wang W, Chandrasekhar R, Collier BR, Patel MB. Antioxidant supplementation and atrial arrhythmias in critically ill trauma patients. J Surg Res. 2018;222:10–6.
Article
CAS
Google Scholar
Raposio E, Grieco MP, Caleffi E. Evaluation of plasma oxidative stress, with or without antioxidant supplementation, in superficial partial thickness burn patients: a pilot study. J Plast Surg Hand Surg. 2017;51(6):393–8.
Article
Google Scholar
Heyland DK, Dhaliwal R, Day AG, Muscedere J, Drover J, Suchner U, et al. Reducing deaths due to oxidative stress (the redoxs study): rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients. Proc Nutr Soc. 2006;65(3):250–63.
Article
CAS
Google Scholar
Galley HF, Davies MJ, Webster NR. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic Biol Med. 1996;20(1):139–43.
Article
CAS
Google Scholar
Angdin M, Settergren G, Starkopf J, et al. Protective effect of antioxidants on pulmonary endothelial function after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2003;17(3):314–20.
Article
Google Scholar
Rümelin A, Jaehde U, Kerz T, et al. Early postoperative substitution procedure of the antioxidant ascorbic acid. J Nutr Biochem. 2005;16(2):104–8.
Article
Google Scholar
Bradley JA, King RF, Schorah CJ, et al. Vitamins in intravenous feeding: a study of water-soluble vitamins and folate in critically ill patients receiving intravenous nutrition. Br J Surg. 2010;65(7):492–4.
Article
Google Scholar
Pontesarruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crtit Care Med. 2006;34(9):2325–33.
Article
CAS
Google Scholar
De Grooth HJ, Manubulu-Choo W-P, Zandvliet AS, et al. Vitamin-C pharmacokinetics in critically ill patients: a randomized trial of four intravenous regimens. Chest. 2018;153(6):1368–77.
Article
Google Scholar
Langlois PL, Szwec C, D’Aragon F, et al. Vitamin D supplementation in the critically ill: a systematic review and meta-analysis. Clin Nutr. 2018;37(4):1238–46.
Article
CAS
Google Scholar
Li J. Evidence is stronger than you think: a meta-analysis of vitamin C use in patients with sepsis. Critical Care (BioMed Central). 2018;22(1):258.
Google Scholar
Padayatty SJ. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533.
Article
CAS
Google Scholar
Langlois PL, Manzanares W, et al. Vitamin C supplementation in the critically ill: a systematic review and meta-analysis. J Parenter Enter Nutr. 2018;10:15–20. https://doi.org/10.1177/2050312118807615.
Article
Google Scholar
Bielli A, Scioli MG, Mazzaglia D, et al. Antioxidants and vascular health. Life Sci. 2015;143:209–16.
Article
CAS
Google Scholar
Williams FN, Herndon DN, Hawkins HK, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13(6):R183.
Article
Google Scholar
May JM, Qu ZC, Nazarewicz R, et al. Ascorbic acid efficiently enhances neuronal synthesis of norepinephrine from dopamine. Brain Res Bull. 2013;90(Complete):35–42.
Article
CAS
Google Scholar
Kieffer P, Thannberger P, Wilhelm JM, et al. Multiple organ dysfunction dramatically improving with the infusion of vitamin C: more support for the persistence of scurvy in our “welfare” society. Intensive Care Med. 2001;27(2):448.
Article
CAS
Google Scholar
Matsuda T, Tanaka H, Hanumadass M, et al. Effects of high-dose vitamin C administration on postburn microvascular fluid and protein flux. J Burn Care Rehabil. 1992;13(5):560–6.
Article
CAS
Google Scholar
Tanaka H, Hanumadass M, Matsuda H, et al. Hemodynamic effects of delayed initiation of antioxidant therapy (beginning two hours after burn) in extensive third-degree burns. J Burn Care Rehabil. 1995;16(6):610.
Article
CAS
Google Scholar
Tanaka H, Broaderick P, Shimazaki S, et al. How long do we need to give antioxidant therapy during resuscitation when its administration is delayed for two hours? J Burn Care Rehabil. 1992;13(5):567.
Article
CAS
Google Scholar
Till GO, Guilds LS, Mahrougui M, et al. Role of xanthine oxidase in thermal injury of skin. Am J Pathol. 1989;135(1):195.
CAS
PubMed
PubMed Central
Google Scholar
Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine–xanthine oxidase system. Biochem Biophys Res Commun. 1975;63(2):463–8.
Article
CAS
Google Scholar
Mashour S, Turner JMR. Acute renal failure, oxalosis, and vitamin C supplementation: a case report and review of the literature. Chest. 2000;118(2):561–3.
Article
CAS
Google Scholar
Rutkowski M, Grzegorczyk K. Adverse effects of antioxidative vitamins. Int J Occup Med Environ Health. 2012;25(2):105–21.
Article
Google Scholar
Massey LK. Ascorbate increases human oxaluria and kidney stone risk. J Nutr. 2005;135(7):1673–7.
Article
CAS
Google Scholar
Wandzilak TR, Dandre SD, Davis PA, et al. Effect of high dose vitamin C on urinary oxalate levels. J Urol. 1994;151(4):834–7.
Article
CAS
Google Scholar
Galvao AM, Wanderley MSO, Silva RA, et al. Intratracheal co-administration of antioxidants and ceftriaxone reduces pulmonary injury and mortality rate in an experimental model of sepsis [J]. Respirology. 2014;19(7):1080–7.
Article
Google Scholar
Reddell L, Cotton BA. Antioxidants and micronutrient supplementation in trauma patients [J]. Curr Opin Clin Nutr Metab Care. 2012;15(2):181–7.
Article
CAS
Google Scholar
Oudemans-van Straaten HM, Man SD, Waard MCD. Vitamin C revisited. Crit Care. 2014;18(4):1–13.
Article
Google Scholar
Daniel G. Increasing vitamin C Content in plant foods to improve their nutritional value—successes and challenges. Nutrients. 2013;5(9):3424–46.
Article
Google Scholar