Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.
Google Scholar
Rocco PR, Dos Santos C, Pelosi P. Pathophysiology of ventilator-associated lung injury. Curr Opin Anaesthesiol. 2012;25(2):123–30.
Article
PubMed
Google Scholar
Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American thoracic society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–63.
Article
PubMed
Google Scholar
Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.
Article
CAS
PubMed
Google Scholar
The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.
Combes A, Peek GJ, Hajage D, Hardy P, Abrams D, Schmidt M, et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med. 2020;46(11):2048–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartlett RH. Physiology of gas exchange during ECMO for respiratory failure. J Intensive Care Med. 2017;32(4):243–8.
Article
PubMed
Google Scholar
Messai E, Bouguerra A, Harmelin G, Di Lascio G, Cianchi G, Bonacchi M. A new formula for determining arterial oxygen saturation during venovenous extracorporeal oxygenation. Intensive Care Med. 2013;39(2):327–34.
Article
CAS
PubMed
Google Scholar
Schmidt M, Tachon G, Devilliers C, Muller G, Hekimian G, Brechot N, et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med. 2013;39(5):838–46.
Article
CAS
PubMed
Google Scholar
Romagnoli S, Zagli G, Ricci Z, Villa G, Barbani F, Pinelli F, et al. Cardiac output: a central issue in patients with respiratory extracorporeal support. Perfusion. 2017;32(1):44–9.
Article
PubMed
Google Scholar
Legras A, Caille A, Begot E, Lhéritier G, Lherm T, Mathonnet A, et al. Acute respiratory distress syndrome (ARDS)-associated acute cor pulmonale and patent foramen ovale: a multicenter noninvasive hemodynamic study. Critical care (London, England). 2015;19(1):174.
Article
Google Scholar
Bréchot N, Hajage D, Kimmoun A, Demiselle J, Agerstrand C, Montero S, et al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study. Lancet. 2020;396(10250):545–52.
Article
PubMed
Google Scholar
Messai E, Bouguerra A, Guarracino F, Bonacchi M. Low blood arterial oxygenation during venovenous extracorporeal membrane oxygenation: proposal for a rational algorithm-based management. J Intensive Care Med. 2016;31(8):553–60.
Article
PubMed
Google Scholar
Montisci A, Maj G, Zangrillo A, Winterton D, Pappalardo F. Management of refractory hypoxemia during venovenous extracorporeal membrane oxygenation for ARDS. Asaio j. 2015;61(3):227–36.
Article
CAS
PubMed
Google Scholar
Lazzeri C, Cianchi G, Bonizzoli M, Batacchi S, Peris A, Gensini GF. The potential role and limitations of echocardiography in acute respiratory distress syndrome. Ther Adv Respir Dis. 2016;10(2):136–48.
Article
PubMed
Google Scholar
Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42(5):739–49.
Article
CAS
PubMed
Google Scholar
International consensus statement on training standards for advanced critical care echocardiography. Intensive care medicine. 2014;40(5):654–66.
Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Critical care (London, England). 2017;21(1):147.
Article
Google Scholar
Huber W, Findeisen M, Lahmer T, Herner A, Rasch S, Mayr U, et al. Prediction of outcome in patients with ARDS: A prospective cohort study comparing ARDS-definitions and other ARDS-associated parameters, ratios and scores at intubation and over time. PLoS ONE. 2020;15(5):e0232720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giraud R, Siegenthaler N, Merlani P, Bendjelid K. Reproducibility of transpulmonary thermodilution cardiac output measurements in clinical practice: a systematic review. J Clin Monit Comput. 2017;31(1):43–51.
Article
PubMed
Google Scholar
Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Critical care (London, England). 2012;16(6):R232.
Article
Google Scholar
Kapoor PM, Bhardwaj V, Sharma A, Kiran U. Global end-diastolic volume an emerging preload marker vis-a-vis other markers—Have we reached our goal? Ann Card Anaesth. 2016;19(4):699–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.
Article
PubMed
Google Scholar
Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.
Article
PubMed
Google Scholar
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.
Article
CAS
PubMed
Google Scholar
Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med. 2014;189(11):1374–82.
Article
PubMed
Google Scholar
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.
Article
PubMed
PubMed Central
Google Scholar
Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983–91.
Article
PubMed
Google Scholar
Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.
Article
CAS
PubMed
Google Scholar
Puchalski MD, Lui GK, Miller-Hance WC, Brook MM, Young LT, Bhat A, et al. Guidelines for performing a comprehensive transesophageal echocardiographic: examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(2):173–215.
Article
PubMed
Google Scholar
Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Critic Care (London, England). 2009;13(1):201.
Article
Google Scholar
Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019;23(1):116.
Article
PubMed
PubMed Central
Google Scholar
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.
Article
CAS
PubMed
Google Scholar
Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82.
Article
PubMed
Google Scholar
Wetterslev M, Møller-Sørensen H, Johansen RR, Perner A. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intens Care Med. 2016;42(8):1223–33.
Article
Google Scholar
Lorne E, Diouf M, de Wilde RBP, Fischer MO. Assessment of interchangeability rate between 2 methods of measurements: An example with a cardiac output comparison study. Medicine (Baltimore). 2018;97(7):e9905.
Mercado P, Maizel J, Beyls C, Titeca-Beauport D, Joris M, Kontar L, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Critic Care (London, England). 2017;21(1):136.
Article
Google Scholar
Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15(2):85–91.
Article
CAS
PubMed
Google Scholar
Feldman JM. Is it a bird? Is it a plane? The role of patient monitors in medical decision making. Anesth Analg. 2009;108(3):707–10.
Article
PubMed
Google Scholar
Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126(6):1001–4.
CAS
PubMed
Google Scholar
Mackenzie JD, Haites NE, Rawles JM. Method of assessing the reproducibility of blood flow measurement: factors influencing the performance of thermodilution cardiac output computers. Br Heart J. 1986;55(1):14–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tibballs J, Hochmann M, Osborne A, Carter B. Accuracy of the BoMED NCCOM3 bioimpedance cardiac output monitor during induced hypotension: an experimental study in dogs. Anaesth Intensive Care. 1992;20(3):326–31.
Article
CAS
PubMed
Google Scholar
Broomhead CJ, Wright SJ, Kiff KM, Withington PS. Validation of thoracic electrical bioimpedance as a porcine research tool. Br J Anaesth. 1997;78(3):323–5.
Article
CAS
PubMed
Google Scholar
Botero M, Kirby D, Lobato EB, Staples ED, Gravenstein N. Measurement of cardiac output before and after cardiopulmonary bypass: comparison among aortic transit-time ultrasound, thermodilution, and noninvasive partial CO2 rebreathing. J Cardiothorac Vasc Anesth. 2004;18(5):563–72.
Article
PubMed
Google Scholar
Graeser K, Zemtsovski M, Kofoed KF, Winther-Jensen M, Nilsson JC, Kjaergaard J, et al. Comparing methods for cardiac output: intraoperatively Doppler-derived cardiac output measured with 3-dimensional echocardiography is not interchangeable with cardiac output by pulmonary catheter thermodilution. Anesth Analg. 2018;127(2):399–407.
Article
PubMed
Google Scholar
Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113(5):1220–35.
Article
PubMed
Google Scholar
Rowland TW, Melanson EL, Popowski BE, Ferrone LC. Test-retest reproducibility of maximum cardiac output by Doppler echocardiography. Am J Cardiol. 1998;81(10):1228–30.
Article
CAS
PubMed
Google Scholar
Axler O, Tousignant C, Thompson CR, Dall’ava-Santucci J, Phang PT, Russell JA, et al. Comparison of transesophageal echocardiographic, fick, and thermodilution cardiac output in critically ill patients. J Crit Care. 1996;11(3):109–16.
Article
CAS
PubMed
Google Scholar
Montenij LJ, Buhre WF, Jansen JR, Kruitwagen CL, de Waal EE. Methodology of method comparison studies evaluating the validity of cardiac output monitors: a stepwise approach and checklist. Br J Anaesth. 2016;116(6):750–8.
Article
CAS
PubMed
Google Scholar
Møller-Sørensen H, Graeser K, Hansen KL, Zemtsovski M, Sander EM, Nilsson JC. Measurements of cardiac output obtained with transesophageal echocardiography and pulmonary artery thermodilution are not interchangeable. Acta Anaesthesiol Scand. 2014;58(1):80–8.
Article
PubMed
CAS
Google Scholar
Baron T, Berglund L, Hedin EM, Flachskampf FA. Test-retest reliability of new and conventional echocardiographic parameters of left ventricular systolic function. Clin Res Cardiol. 2019;108(4):355–65.
Article
PubMed
Google Scholar
Zhang Y, Wang Y, Shi J, Hua Z, Xu J. Cardiac output measurements via echocardiography versus thermodilution: A systematic review and meta-analysis. PLoS ONE. 2019;14(10):e0222105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krivitski N, Galyanov G, Gehron JM, Bandorski D, Boning A. New noninvasive methodology to measure cardiac output in veno-venous extracorporeal membrane oxygenation patients. Perfusion. 2020;35(1):73–80.
Article
PubMed
Google Scholar
Haller M, Zollner C, Manert W, Briegel J, Kilger E, Polasek J, et al. Thermodilution cardiac output may be incorrect in patients on venovenous extracorporeal lung assist. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1812–7.
Article
CAS
PubMed
Google Scholar
Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth. 1993;40(2):142–53.
Article
CAS
PubMed
Google Scholar
Palmér O, Palmér K, Hultman J, Broman M. Cannula design and recirculation during venovenous extracorporeal membrane oxygenation. Asaio j. 2016;62(6):737–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giani M, Lucchini A, Rona R, Capalbi S, Grasselli G, Foti G. Pressure-flow relationship of cannulae for extracorporeal membrane oxygenation. Perfusion. 2020;35(3):271–2.
Article
PubMed
Google Scholar
Broman LM, Prahl Wittberg L, Westlund CJ, Gilbers M, Perry da Câmara L, Westin J, et al. Pressure and flow properties of cannulae for extracorporeal membrane oxygenation II: drainage (venous) cannulae. Perfusion. 2019;34(1):65–73.
Article
PubMed
Google Scholar
Bonacchi M, Harmelin G, Peris A, Sani G. A novel strategy to improve systemic oxygenation in venovenous extracorporeal membrane oxygenation: the “χ-configuration.” J Thorac Cardiovasc Surg. 2011;142(5):1197–204.
Article
PubMed
Google Scholar
van Heijst AF, van der Staak FH, de Haan AF, Liem KD, Festen C, Geven WB, et al. Recirculation in double lumen catheter veno-venous extracorporeal membrane oxygenation measured by an ultrasound dilution technique. Asaio J. 2001;47(4):372–6.
Article
PubMed
Google Scholar
Abrams D, Bacchetta M, Brodie D. Recirculation in venovenous extracorporeal membrane oxygenation. Asaio J. 2015;61(2):115–21.
Article
CAS
PubMed
Google Scholar
Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110(3):799–811.
Article
PubMed
Google Scholar
Herner A, Lahmer T, Mayr U, Rasch S, Schneider J, Schmid RM, et al. Transpulmonary thermodilution before and during veno-venous extra-corporeal membrane oxygenation ECMO: an observational study on a potential loss of indicator into the extra-corporeal circuit. J Clin Monit Comput. 2019;7:54.
Google Scholar
Yu WQ, Zhang Y, Zhang SY, Liang ZY, Fu SQ, Xu J, et al. Impact of misplaced subclavian vein catheter into jugular vein on transpulmonary thermodilution measurement variables. J Zhejiang Univ Sci B. 2016;17(1):60–6.
Article
PubMed
PubMed Central
Google Scholar
Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, Mc KW. The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation. 1951;4(5):735–46.
Article
CAS
PubMed
Google Scholar
Brown LM, Liu KD, Matthay MA. Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L547–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt S, Westhoff T, Schlattmann P, Zidek W, Compton F. Analysis of transpulmonary thermodilution data confirms the influence of renal replacement therapy on thermodilution hemodynamic measurements. Anesth Analg. 2016;122(5):1474–9.
Article
PubMed
Google Scholar
Keller G, Desebbe O, Henaine R, Lehot JJ. Transpulmonary thermodilution in a pediatric patient with an intracardiac left-to-right shunt. J Clin Monit Comput. 2011;25(2):105–8.
Article
PubMed
Google Scholar
Giraud R, Siegenthaler N, Park C, Beutler S, Bendjelid K. Transpulmonary thermodilution curves for detection of shunt. Intensive Care Med. 2010;36(6):1083–6.
Article
PubMed
Google Scholar
Garcia YA, Quintero L, Singh K, Lakticova V, Iakovou A, Koenig SJ, et al. Feasibility, safety, and utility of advanced critical care transesophageal echocardiography performed by pulmonary/critical care fellows in a medical ICU. Chest. 2017;152(4):736–41.
Article
PubMed
Google Scholar
Vignon P, Begot E, Mari A, Silva S, Chimot L, Delour P, et al. Hemodynamic assessment of patients with septic shock using transpulmonary thermodilution and critical care echocardiography: a comparative study. Chest. 2018;153(1):55–64.
Article
PubMed
Google Scholar
Herner A, Lahmer T, Mayr U, Rasch S, Schneider J, Schmid RM, et al. Transpulmonary thermodilution before and during veno-venous extra-corporeal membrane oxygenation ECMO: an observational study on a potential loss of indicator into the extra-corporeal circuit. J Clin Monit Comput. 2020;34(5):923–36.
Article
PubMed
Google Scholar