Perren A, Brochard L. Managing the apparent and hidden difficulties of weaning from mechanical ventilation. Intensive Care Med. 2013;39:1885–95.
Article
PubMed
Google Scholar
Doorduin J, van de Hoeven JG, Heunks LMA. The differential diagnosis for failure to wean from mechanical ventilation. Curr Opin Anesthesiol. 2016;29:150–7.
Article
Google Scholar
Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med. 1997;155:906–15.
Article
CAS
PubMed
Google Scholar
Vassilakopoulos T, Zakynthinos S, Roussos C. The tension-time index and the frequency/tidal volume ratio are the major pathophysiologic determinants of weaning failure and success. Am J Respir Crit Care Med. 1998;158:378–85.
Article
CAS
PubMed
Google Scholar
McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367:2233–9.
Article
CAS
PubMed
Google Scholar
Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–9.
Article
CAS
PubMed
Google Scholar
Jubran A. Weaning-induced cardiac failure. In: Mancebo J, Net A, Brochard L, editors. Mechanical ventilation and weaning. Update in intensive care and emergency medicine, vol. 36. Berlin: Springer; 2002. p. 184–92.
Google Scholar
Epstein SK. Etiology of extubation failure and the predictive value of the rapid shallow breathing index. Am J Resp Crit Care Med. 1995;152:545–9.
Article
CAS
PubMed
Google Scholar
Cabello B, Thille AW, Roche-Campo F, Brochard L, Gómez FJ, Mancebo J. Physiological comparison of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med. 2010;36:1171–9.
Article
PubMed
Google Scholar
Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Extravascular lung water, B-type natriuretic peptide and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med. 2014;42:1882–9.
Article
CAS
PubMed
Google Scholar
Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;14:R120.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Shen F, Teboul JL, Anguel N, Beurton A, Bezaz N, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal. Crit Care. 2016;20:369.
Article
PubMed
PubMed Central
Google Scholar
Roche-Campo F, Bedet A, Vivier E, Brochard L, Mekontso Dessap A. Cardiac function during weaning failure: the role of diastolic dysfunction. Ann Intensive Care. 2018;8:2.
Article
PubMed
PubMed Central
Google Scholar
Teboul JL. Weaning-induced cardiac dysfunction: where are we today? Intensive Care Med. 2014;40:1069–79.
Article
PubMed
Google Scholar
Grasso S, Leone A, De Michele M, Anaclerio R, Cafarelli A, Ancona G, et al. Use of N terminal pro-brain natriuretic peptide to detect acute cardiac dysfunction during weaning failure in difficult-to-wean patients with chronic obstructive pulmonary disease. Crit Care Med. 2007;35:96–105.
Article
CAS
PubMed
Google Scholar
Dres M, Teboul JL, Monnet X. Weaning the cardiac patient from mechanical ventilation. Current opinion in critical care. 2014;20:493–8.
Article
PubMed
Google Scholar
Sterba M, Banerjee A, Mudaliar Y. Prospective observational study of levosimendan and weaning of difficult- to- wean ventilator dependent intensive care patients. Crit Care Resusc. 2008;10:182–6.
PubMed
Google Scholar
Routsi C, Stanopoulos I, Zakynthinos E, Politis P, Papas V, Zervakis D, et al. Nitroglycerin can facilitate weaning of difficult-to-wean chronic obstructive pulmonary disease patients: a prospective interventional nonrandomized study. Crit Care. 2010;14:R204.
Article
PubMed
PubMed Central
Google Scholar
Stanopoulos I, Manolakoglou N, Pitsiou G, Trigonis I, Tsiata EA, Boutou AK, et al. Sildenafil may facilitate weaning in mechanically ventilated COPD patients: a report of three cases. Anaesth Intensive Care. 2007;35:610–3.
CAS
PubMed
Google Scholar
Paulus S, Lehot JJ, Bastien O, Piriou V, George M, Estanove S. Enoximone and acute left ventricular failure during weaning from mechanical ventilation after cardiac surgery. Crit Care Med. 1994;22:74–80.
Article
CAS
PubMed
Google Scholar
Valtier B, Teboul JL, Lemaire F. Left ventricular dysfunction while weaning from mechanical ventilation. Contribution of enoximone. Arch Mal Coeur Vaiss. 1990;83:83–6.
PubMed
Google Scholar
Luce JM. The cardiovascular effects of mechanical ventilation and positive expiratory pressure. JAMA. 1984;252:807–11.
Article
CAS
PubMed
Google Scholar
Pinsky MR. Cardiovascular effects of ventilator support and withdrawal. Anesh Analg. 1994;79:567–76.
CAS
Google Scholar
Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301:453–9.
Article
CAS
PubMed
Google Scholar
Scharf SM, Brown R, Tow DE, Parisi AF. Cardiac effects of increased lung volume and decreased pleural pressure in man. J Appl Physiol. 1979;47:257–62.
Article
CAS
PubMed
Google Scholar
Scharf SM, Brown R, Saunders N, Green LH. Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appl Physiol. 1979;47:582–90.
Article
CAS
PubMed
Google Scholar
Oh TE, Bhatt S, Lin ES, Hutchinson RC, Low JM. Plasma catecholamines and oxygen consumption during weaning from mechanical ventilation. Intensive Care Med. 1991;17:199–203.
Article
CAS
PubMed
Google Scholar
Scharf SM, Bianco JA, Tow DE, et al. The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation. 1981;63:871–5.
Article
CAS
PubMed
Google Scholar
Rasanen J, Nikki P, Heikkila J. Acure myocardial infarction complicated by respiratory failure. Chest. 1984;85:21–8.
Article
CAS
PubMed
Google Scholar
Demoule A, Lefort Y, Lopes ME, et al. Successful weaning from mechanical ventilation after coronary angioplastry. Br J Anesth. 2004;93:295–7.
Article
CAS
Google Scholar
de Meirelles Almeida CA, Nedel WL, Morais VD, Boniatti MM, de Almeida-Filho OC. Diastolic dysfunction as a predictor of weaning failure: a systematic review and meta-analysis. J Crit Care. 2016;34:135–41.
Article
PubMed
Google Scholar
Thille AW, Boissier F, Ben Ghezala H, Razazi K, Mekontso-Dessap A, Brun-Buisson C. Risk factors for and prediction by caregivers of extubation failure in ICU patients: a prospective study. Crit Care Med. 2015;43:613–20.
Article
PubMed
Google Scholar
Papanikolaou J, Makris D, Saranteas T, Karakitsos D, Zintzaras E, Karabinis A, et al. New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player. Intensive Care Med. 2011;37:1976–85.
Article
PubMed
Google Scholar
Konomi I, Tasoulis A, Kaltsi I, Karatzanos E, Vasileiadis I, Temperikidis P, Nanas S, Routsi CI. Left ventricular diastolic dysfunction-an independent risk factor for weaning failure from mechanical ventilation. Anaesth Intensive Care. 2016;44:466–73.
CAS
PubMed
Google Scholar
Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–56.
Article
PubMed
Google Scholar
Rasmussen T, Kober L, Pedersen JH, et al. Relationship between chronic obstructive pulmonary disease and subclinical coronary artery disease in long-term smokers. Eur Heart J Cardiovascul Imaging. 2013;14:1159–66.
Article
Google Scholar
MacDonald MI, Shafuddin E, King PT, Chang CL, Bardin PG, Hancox RJ. Cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease. Lancet Respir Med. 2016;4:138–48.
Article
PubMed
Google Scholar
Matamis D, Tsagourias M, Papathanasiou A, Sineffaki H, Lepida D, Galiatsou E, et al. Targeting occult heart failure in intensive care unit patients with acute chronic obstructive pulmonary disease exacerbation: effect on outcome and quality of life. J Crit Care. 2014;315:e7–14.
Google Scholar
McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.
Article
CAS
PubMed
Google Scholar
Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39:2612–8.
Article
PubMed
Google Scholar
Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.
Article
PubMed
Google Scholar
Zapata L, Vera P, Roglan A, Gich I, Ordonez-Llanos J, Betbese AJ. B-type natriuretic peptides for prediction and diagnosis of weaning failure from cardiac origin. Intensive Care Med. 2011;37:477–85.
Article
CAS
PubMed
Google Scholar
Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73.
Article
PubMed
Google Scholar
Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–9.
Article
CAS
PubMed
Google Scholar
Zakynthinos S, Routsi C, Vassilakopoulos T, Kaltsas P, Zakynthinos E, Kazi D, et al. Differential cardiovascular responses during weaning failure: effects on tissue oxygenation and lactate. Intensive Care Med. 2005;31:1634–42.
Article
PubMed
Google Scholar
Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-man): a randomized controlled trial. Lancet. 2005;366:472–7.
Article
PubMed
Google Scholar
Teboul JL, Monnet X, Richard C. Weaning failure of cardiac origin: recent advances. Crit Care. 2010;14:211.
Article
PubMed
PubMed Central
Google Scholar
Vignon P. Cardiovascular failure and weaning. Ann Transl Med. 2018;6:354–63.
Article
PubMed
PubMed Central
Google Scholar
Nagueh S, Smiseth O, Appleton C, Byrd B, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.
Article
PubMed
Google Scholar
Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, et al. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37:1696–701.
Article
PubMed
Google Scholar
Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic echocardiography with Doppler tissue imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16:R81.
Article
PubMed
PubMed Central
Google Scholar
Gerbaud E, Erickson M, Grenouillet-Delacre M, Beauvieux MC, Coste P, Durrieu-Jais C, et al. Echocardiographic evaluation and N-terminal pro-brain natriuretic peptide measurement of patients hospitalized for heart failure during weaning from mechanical ventilation. Minerva Anestesiol. 2012;78:415–25.
CAS
PubMed
Google Scholar
Ait-Oufella H, Tharaux PL, Baudel JL, Vandermeersch S, Meyer P, Tonnellier M, et al. Variation in natriuretic peptides and mitral flow indexes during successful ventilatory weaning: a preliminary study. Intensive Care Med. 2007;33:1183–6.
Article
CAS
PubMed
Google Scholar
Ruiz-Bailén M, Cobo-Molinos J, Castillo-Rivera A, Cárdenas-Cruz A, Martínez-Amat A, Sevilla-Martínez M, et al. Stress echocardiography in patients who experienced mechanical ventilation weaning failure. J Crit Care. 2017;39:66–71.
Article
PubMed
Google Scholar
Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;6:16.
Article
PubMed
PubMed Central
Google Scholar
Mongodi S, Via G, Bouhemad B, Storti E, Mojoli F, Braschi A. Usefulness of combined bedside lung ultrasound and echocardiography to assess weaning failure from mechanical ventilation: a suggestive case. Crit Care Med. 2013;41:e182–5.
Article
PubMed
Google Scholar
Via G, Storti E, Gulati G, Neri L, Mojoli F, Braschi A. Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol. 2012;78:1282–96.
CAS
PubMed
Google Scholar
Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42:1107–17.
Article
CAS
PubMed
Google Scholar
Hurford WE, Favorito F. Association of myocardial ischemia with failure to wean from mechanical ventilation. Crit Care Med. 1995;23:1475–80.
Article
CAS
PubMed
Google Scholar
Abalos A, Leibowitz AB, Distefano D, Halpern N, Iberti TJ. Myocardial ischemia during the weaning period. Am J Crit Care. 1992;1:32–6.
CAS
PubMed
Google Scholar
Chatila W, Ani S, Guaglianone D, Jacob B, Amoateng-Adjepong Y, Manthous CA. Cardiac ischemia during weaning from mechanical ventilation. Chest. 1996;109:1577–83.
Article
CAS
PubMed
Google Scholar
Hurford WE, Lynch KE, Strauss HW, Lovenstein E, Zapol WM. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Aneshesiology. 1991;74:1007–16.
Article
CAS
Google Scholar
Mekontso-Dessap A, de Prost N, Girou E, Braconnier F, Lemaire F, Brun-Buisson C, et al. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med. 2006;32:1529–36.
Article
CAS
PubMed
Google Scholar
Chien JY, Lin MS, Huang YC, Chien YF, Yu CJ, Yang PC. Changes in B-type natriuretic peptide improve weaning outcome predicted by spontaneous breathing trial. Crit Care Med. 2008;36:1421–6.
Article
CAS
PubMed
Google Scholar
Mekontso Dessap A, Roche-Campo F, Kouatchet A, et al. Natriuretic peptide-driven fluid management during ventilator weaning: a randomized controlled trial. Am J Respir Crit Care Med. 2012;186:1256–63.
Article
CAS
PubMed
Google Scholar
Lubien E, DeMaria A, Krishnaswamy P, Clopton P, Koon J, Kazanegra R, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation. 2002;105:595–601.
Article
CAS
PubMed
Google Scholar
McCullough PA, Omland T, Maisel AS. B-type natriuretic peptides: a diagnostic breakthrough for clinicians. Rev Cardiovasc Med. 2003;4:72–80.
PubMed
Google Scholar
Anguel N, Monnet X, Osman D, Castelain V, Richard C, Teboul JL. Increase in plasma protein concentration for diagnosing weaning-induced pulmonary oedema. Intensive Care Med. 2008;34:1231–8.
Article
PubMed
Google Scholar
Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Annals Intensive Care. 2015;5:38.
Article
Google Scholar
Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–63.
Article
PubMed
Google Scholar
Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet. 2016;387:1856–66.
Article
PubMed
Google Scholar
Frutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, Apezteguia C, et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest. 2006;130:164–71.
Article
Google Scholar
Upadya A, Tilluckdharry L, Muralidharan V, Amoateng-Adjepong Y, Manthous CA. Fluid balance and weaning outcomes. Intensive Care Med. 2005;31:1643–7.
Article
PubMed
Google Scholar
Maeda K, Takayoshi T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J. 1998;135:825–32.
Article
CAS
PubMed
Google Scholar
Howard PA. Treating heart failure with preserved ejection fraction: a challenge for clinicians. Hosp Pharm. 2015;50:454–9.
Article
PubMed
PubMed Central
Google Scholar
Faisy C, Meziani F, Planquette B, Clavel M, Gacouin A, Bornstain C, et al. Effect of acetazolamide vs placebo on duration of invasive mechanical ventilation among patients with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA. 2016;315:480–8.
Article
CAS
PubMed
Google Scholar
Mazur JE, Devlin JW, Peters MJ, Jankowski MA, Iannuzzi MC, Zarowitz BJ. Single versus multiple doses of acetazolamide for metabolic alkalosis in critically ill medical patients: a randomized, double-blind trial. Crit Care Med. 1999;27:1257–61.
Article
CAS
PubMed
Google Scholar
Alpern RJ, Peixoto AJ. Use of renin angiotensin system blockers after acute kidney injury: balancing tradeoffs. JAMA. 2018;178:1690–2.
Google Scholar
Salgado DR, Silva E, Vincent JL. Control of hypertension in the critically ill: a pathophysiological approach. Annals Intensive Care. 2013;3:17.
Article
Google Scholar
Annane D, Quanes-Besbes L, De Backer D, Du B, Gordon AC, et al. A globar perspective on vasoactive agents in shock. Annals Intensive Care. 2018;44:833–46.
Article
CAS
Google Scholar
Aubier M, Murciano D, Menu Y, Boczkowski J, Mal H, Pariente R. Dopamine effects on diaphragmatic strength during acute respiratory failure in chronic obstructive pulmonary disease. Ann Intern Med. 1989;110:17–23.
Article
CAS
PubMed
Google Scholar
Ciarka A, Rimacchi R, Vincent JL, Velez-Roa S, Dumonceaux M, Leeman M, van de Borne P. Effects of low-dose dopamine on ventilation in patients with chronic obstructive pulmonary disease. Eur J Clin Invest. 2004;34:508–12.
Article
CAS
PubMed
Google Scholar
Quanes-Besbes L, Quanes I, Dachraoui F, Dimassi S, Mebazaa A, Abroug F. Weaning difficult –to-wean chronic obstructive pulmonary disease patients: a pilot study comparing initial hemodynamic effects of levosimendan and dobutamine. J Crit Care. 2011;26:15–21.
Article
Google Scholar
Gobel FI, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57:549–56.
Article
CAS
PubMed
Google Scholar
Toller WG, Stranz C. Levosimendan, a new inotropic and vasodilator agent. Anesthesiology. 2006;104:556–69.
Article
CAS
PubMed
Google Scholar
Kerbaul F, Rondelet B, Demester J-P, et al. Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure. Crit Care Med. 2006;34:2814–9.
Article
CAS
PubMed
Google Scholar
Kaltsi I, Gratsiou C, Nanas S, Routsi C. Effects of Levosimendan on weaning from mechanical ventilation of patients with left ventricular dysfunction. Critical Care. 2018;22(Suppl 1):82.
Google Scholar
Meaudre E, Jego C, Goutorbe P, Bordes J, Asencio Y, Montcriol A, et al. Weaning failure from mechanical ventilation due to dilated cardiomyopathy: successful use of levosimendan. Acta Anaesthesiol Scand. 2009;53:416–7.
Article
CAS
PubMed
Google Scholar
Caetano F, Mota P, Barra S, Almeida I, Botelho A, Trigo J, et al. Use of levosimendan in critically ill patients with severe aortic stenosis and left ventricular dysfunction. Eur Heart J Acute Cardiovasc Care. 2012;1:281–4.
Article
PubMed
PubMed Central
Google Scholar
Farmakis D, Alvarez J, Gal TB, Brito D, Fedele F, Fonseca C, et al. Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: An expert panel position paper. Intern J Cardiol. 2016;222:303–12.
Article
Google Scholar
Fournell A, Scheeren TW, Picker O, Schwarte LA. Pharmacologic interventions to improve splanchnic oxygenation during ventilation with positive end-expiratory pressure. Adv Exp Med Biol. 2012;737:235–8.
Article
CAS
PubMed
Google Scholar
Doorduin J, Sinderby CA, Beck J, et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185:90–5.
Article
CAS
PubMed
Google Scholar
Gordon AC, Perkins GD, Singer M, McAuley DF, Orme RM, Santhakumaran S, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375:1638–48.
Article
CAS
PubMed
Google Scholar
Elias S, Sviri S, Orenbuch-Harroch E, Fellig Y, Ben-Yehuda A, Fridlender ZG, et al. Sildenafil to facilitate weaning from inhaled nitric oxide and mechanical ventilation in a patient with severe secondary pulmonary hypertension and a patent foramen ovale. Respir Care. 2011;56:1611–3.
PubMed
Google Scholar
Ng J, Finney J, Shulman R, Bellingan GJ, Singer M, Glynne PE, et al. Treatment of pulmonary hypertension in a general adult intensive care unit: a role for oral sildenafil? Brit J Anaesh. 2005;94:774–7.
Article
CAS
Google Scholar
Trophy TJ. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med. 1998;157:351–70.
Article
Google Scholar
Charan NB. Does sildenafil also improve breathing? Chest. 2001;120:305–6.
Article
CAS
PubMed
Google Scholar
Adamopoulos C, Tsagourias M, Arvaniti K, Veroniki F, Matamis D. Weaning failure from mechanical ventilation due to hypertrophic obstructive cardiomyopathy. Intensive Care Med. 2005;31:734–7.
Article
PubMed
Google Scholar
Duane DT, Redwood SR, Grounds RM. Esmolol aids extubation in intensive care patient with ischaemic pulmonary oedema. Anaesthesia. 1996;51:474–7.
Article
CAS
PubMed
Google Scholar
Sklar MC, Burns K, Rittayamai N, Lanys A, Rauseo M, Chen L, et al. Effort to breathe with various spontaneous breathing trial techniques: a physiologic meta-analysis. Am J Respir Crit Care Med. 2017;195:1477–85.
Article
PubMed
Google Scholar
Tobin MJ. Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med. 2012;185:349–50.
Article
PubMed
Google Scholar
Masip J, Peacock WF, Price S, Cullen L, Martin-Sanchez FJ, Seferovic P, et al. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur Heart J. 2018;39:17–25.
Article
PubMed
Google Scholar
Bendjelid K, Schutz N, Suter PM, Fournier G, Jacques D, Fareh S, et al. Does continuous positive airway pressure by face mask improve patients with acute cardiogenic pulmonary edema due to left ventricular diastolic dysfunction? Chest. 2005;127:1053–8.
Article
PubMed
Google Scholar
Nava S, Gregoretti C, Fanfulla F, Squadrone E, Grassi M, Carlucci A, et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005;33:2465–70.
Article
PubMed
Google Scholar
Ferrer M, Sellarés J, Valencia M, Carrillo A, Gonzalez G, Badia JR, et al. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomized controlled trial. Lancet. 2009;374:1082–8.
Article
PubMed
Google Scholar
Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the Art. Mayo Clin Proc. 2017;92:1382–400.
Article
PubMed
Google Scholar
Schmidt GA, Girard TD, Kress JP, et al. Official executive summary of an American Thoracic Society/American College of Chest Physicians clinical practice guideline: liberation from mechanical ventilation in critically ill adults. Am J Respir Crit Care Med. 2017;195:115–9.
Article
PubMed
Google Scholar
Hernández G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula versus noninvasive ventilation on reintubation and postextubation respiratory failure in high risk patients: a randomized clinical trial. JAMA. 2016;316:2047–8.
Google Scholar
Carrie C, Bui HN, Gerbaud E, Vargas F, Hilbert G. Myocardial ischaemia and weaning failure: is angioplasty the heart of the problem? Intensive Care Med. 2011;37:1223–4.
Article
CAS
PubMed
Google Scholar
Boussarsar M, Besbes L, Gamra H, Nouira S, Elatrous S, Betbout F, et al. Successful weaning from mechanical ventilation following balloon mitral commissurotomy. Intensive Care Med. 1997;23:889–92.
Article
CAS
PubMed
Google Scholar
Koroneos A, Dedeilias P, Routsi C, Kotanidou A, Andrianakis I, Floros I, et al. Coronary artery bypass graft surgery for persistent weaning failure. Intensive Care Med. 2005;31:491–2.
Article
PubMed
Google Scholar
Mantziari L, Kaushik G, Senguttuvan NB, Sharma R. Cardiac resynchronization therapy for critically ill patients with left ventricular systolic dysfunction. Int J Cardiol. 2013;163:141–5.
Article
PubMed
Google Scholar